DOI QR코드

DOI QR Code

멜라토닌 및 관련 인돌 화합물의 산화방지능과 들기름 산화에 대한 억제 효과

Antioxidant activity and inhibitory effect of melatonin and the relative indole compounds on perilla oil oxidation

  • 김석중 (동덕여자대학교 식품영양학과)
  • Kim, Seok Joong (Department of Food and Nutrition, Dongduk Women's University)
  • 투고 : 2016.08.12
  • 심사 : 2016.08.28
  • 발행 : 2016.12.31

초록

멜라토닌은 척추동물 뇌의 송과선에서 생성되는 인돌 호르몬으로 알려졌으나 그 이후로 동물, 식물, 미생물을 포함한 대부분의 생물체에서도 존재하고 멜라토닌 함유 식품을 섭취 시 생체내에 흡수되며, 다양한 기능성과 함께 강한 산화방지능이 확인되어 기능성 소재로서의 관심이 높다. 하지만 이를 식품의 산화방지용으로 활용하고자 한 연구는 없었기에, 본 연구에서는 유지식품의 산화방지용 소재로서 멜라토닌의 활용 가능성을 조사하였다. 이를 위해 먼저 DPPH, ABTS, FRAP, ORAC법을 이용하여 멜라토닌의 산화방지능을 조사하였고, 실제 유지식품으로서 들기름에 대한 산화방지 효과를 분석하였다. 또한 멜라토닌 합성경로에 관련된 다른 인돌 화합물인 트립토판, 트립타민, N-아세틸 세로토닌, 세로토닌과도 그 효과를 비교하였다. DPPH, ABTS, FRAP 법으로 분석한 멜라토닌의 산화방지능은 매우 낮았으나 ORAC 법에서는 가장 높은 효능을 나타내었다. 반면 세로토닌은 반대의 경향을 나타내 분석법에 따라 산화방지능에서의 차이가 나타났다. 들기름에 인돌 화합물들을 각각 1%(w/w) 농도로 첨가한 후 Rancimat법으로 산화 유도기간을 분석한 결과, 멜라토닌 첨가구에서의 산화 유도기간은 $2.93{\pm}0.47h$로 대조구의 $1.43{\pm}0.26h$에 비해 2배 가량 연장되었으며 뷰틸하이드록시톨루엔 효과의 약 50% 수준에 달해 실제 유지식품에서 산화방지 효과가 있었다. 조사한 인돌 화합물들 중에는 트립타민($9.52{\pm}1.43h$)이 들기름의 산화억제에 가장 효과적이었고 다음으로 세로토닌, 트립토판이 유사하였다.

Melatonin, known as a powerful wide-spectrum antioxidant, is consumed as a food supplement in some countries, but its applicability as an antioxidant additive was not yet studied. Therefore, we evaluated the antioxidant activity of melatonin by DPPH, ABTS, FRAP and ORAC assays as well as its ability to inhibit perilla oil oxidation. The activities of four other related indoles were also compared. Melatonin showed the highest antioxidant activity (mmol trolox equivalent per mol indole, mmol TE) in ORAC (2,159) assay, but a low antioxidant activity in DPPH (0.63), ABTS (91), and FRAP (764) assays, whereas serotonin showed an opposite result. Addition of 1% (w/w) melatonin to perilla oil extended the induction period of oxidation up to about 2 times ($2.93{\pm}0.47h$) compared to that of control ($1.43{\pm}0.26h$) in the Rancimat assay, corresponding to almost 50% of the ability of butylated hydroxyl toluene (BHT). Tryptamine was the most effective indole that inhibited perilla oil oxidation ($9.53{\pm}1.43h$).

키워드

참고문헌

  1. Bayr H. Reactive oxygen species. Crit. Care Med. 33: S498-S501 (2005) https://doi.org/10.1097/01.CCM.0000186787.64500.12
  2. Lobo V, Phatak A, Chandra N. Free radicals, antioxidants and functional foods: Impact on human health. Pharmacogn. Rev. 4: 118-126 (2010) https://doi.org/10.4103/0973-7847.70902
  3. Pisoschi AM, Pop A. The role of antioxidants in the chemistry of oxidative stress: A review. Eur. J. Med. Chem. 97: 55-74 (2015) https://doi.org/10.1016/j.ejmech.2015.04.040
  4. Pham-Huy LA, He H, Pham-Huy C. Free radicals, antioxidants in disease and health. Int. J. Biomed. Sci. 4: 89-96 (2008)
  5. Bhattacharyya A, Chattopadhyay R, Mitra S, Crowe SE. Oxidative stress: An essential factor in the pathogenesis of gastrointestinal mucosal diseases. Physiol. Rev. 94: 329-354 (2014) https://doi.org/10.1152/physrev.00040.2012
  6. Zhang YJ, Gan RY, Li S, Zhou Y, Li AN, Xu DP, Li HB. Antioxidant phytochemicals for the prevention and treatment of chronic diseases. Molecules 20: 21138-21156 (2015) https://doi.org/10.3390/molecules201219753
  7. Choe E, Min DB. Mechanisms and factors for edible oil oxidation. Comp. Rev. Food Sci. Food Safety 5: 169-186 (2006) https://doi.org/10.1111/j.1541-4337.2006.00009.x
  8. Yehye WA, Rahman NA, Ariffin A, Hamid SBA, Alhadi AA, Kadir FA, Yaeghoobi M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 101: 295-312 (2015) https://doi.org/10.1016/j.ejmech.2015.06.026
  9. Powell CJ, Connelly JC, Jones SM, Grasso P, Bridges JW. Hepatic responses to the administration of high doses of BHT to the rat: their relevance to hepatocarcinogenicity. Food Chem. Toxicol. 24: 1131-1143 (1999)
  10. Laguerre M, Lecomte J, Villeneuve P. Evaluation of the ability of antioxidants to counteract lipid oxidation: Existing methods, new trends and challenges. Prog. Lipid Res. 46: 244-282 (2007) https://doi.org/10.1016/j.plipres.2007.05.002
  11. Lerner AB, Case JD, Takahashi Y. Isolation of melatonin, a pineal factor that lightens melanocytes. J. Am. Chem. Soc. 80: 2587-2587 (1958)
  12. Brainard GC, Petterborg LJ, Richardson BA, Reiter RJ. Pineal melatonin in syrian hamsters: Circadian and seasonal rhythms in animals maintained under laboratory and natural conditions. Neuroendocrinology 35: 342-348 (1982) https://doi.org/10.1159/000123405
  13. Bonnefont-Rousselot D, Collin F. Melatonin: Action as antioxidant and potential applications in human disease and aging. Toxicology 278: 55-67 (2010) https://doi.org/10.1016/j.tox.2010.04.008
  14. Tan DX, Lucien C, Manchester MP, Terron L, Flores J, Reiter RJ. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res. 42: 28-42 (2007) https://doi.org/10.1111/j.1600-079X.2006.00407.x
  15. Rodriguez C, Mayo JC, Sainz RM, Antolin I, Herrera F, Martini V, Reiter RJ. Regulation of antioxidant enzymes: A significant role for melatonin. J. Pineal Res. 36: 1-9 (2004) https://doi.org/10.1046/j.1600-079X.2003.00092.x
  16. Reiter RJ, Tan DX, Gitto E, Sainz RM, Mayo JC, Leon J, Manchester LC, Kilic VE, Kilic U. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol. J. Pharmacol. 56: 159-170 (2004)
  17. Galano A, Tan DX, Reiter RJ. On the free radical scavenging activities of melatonin's metabolites, AFMK and AMK. J. Pineal Res. 54: 245-257 (2013) https://doi.org/10.1111/jpi.12010
  18. Garcia-Parrilla MC, Cantos E, Troncoso AM. Analysis of melatonin in foods. J. Food Compos. Anal. 22: 177-183 (2009) https://doi.org/10.1016/j.jfca.2008.09.009
  19. Antunes F, Barclay LR, Ingold KU, King M, Norris JQ, Scaiano JC, Xi F. On the antioxidant activity of melatonin. Free Rad. Biol. Med. 26: 117-128 (1999) https://doi.org/10.1016/S0891-5849(98)00168-3
  20. Munik MS, Ekmekciolu C. Prooxidant effects of melatonin: A brief review. Turk. J. Biol. 39: 832-839 (2015) https://doi.org/10.3906/biy-1504-24
  21. Tan DX, Manchester LC, Esteban-Zubero E, Zhou Z, Reiter RJ. Melatonin as a potent and inducible endogenous antioxidant: synthesis and metabolism. Molecules 20: 18886-18906 (2015) https://doi.org/10.3390/molecules201018886
  22. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agr. Food Chem. 48: 3597-3604 (2000) https://doi.org/10.1021/jf000220w
  23. Payet B, Shum Cheong Sing A, Smadja J. Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: Determination of their polyphenolic and volatile constituents. J. Agr. Food Chem. 53: 10074-10079 (2005) https://doi.org/10.1021/jf0517703
  24. Arthur H, Joubert E, de Beer D, Malherbe CJ, Witthuhn RC. Phenylethanoid glycosides as major antioxidants in Lippia multiflora herbal infusion and their stability during steam pasteurization of plant material. Food Chem. 127: 581-588 (2011) https://doi.org/10.1016/j.foodchem.2011.01.044
  25. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Prior RL. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agr. Food Chem. 50: 4437-4444 (2002) https://doi.org/10.1021/jf0201529
  26. Hardeland H. Melatonin in plants-diversity of levels and multiplicity of functions. Front. Plant Sci. 7: 198 (2016)
  27. Apak R, zyrek M, Gl K, apanolu E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J. Agr. Food Chem. 64: 997-1027 (2016) https://doi.org/10.1021/acs.jafc.5b04739
  28. Apak R, zyrek M, Gl K, apanolu E. Antioxidant activity/capacity measurement. 2. Hydrogen atom transfer(HAT)-based, mixedmode (electron transfer (ET)/HAT), and lipid peroxidation assays. J. Agr. Food Chem. 64: 1028-1045 (2016) https://doi.org/10.1021/acs.jafc.5b04743
  29. Huang D, Ou B, Prior RL, The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841-1856 (2005) https://doi.org/10.1021/jf030723c
  30. Xie J, Schaich KM. Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity. J. Agr. Food Chem. 62: 4251-4260 (2014) https://doi.org/10.1021/jf500180u
  31. Foti MC. Antioxidant properties of phenols. J. Pharm. Pharmacol. 59: 1673-1685 (2007) https://doi.org/10.1211/jpp.59.12.0010
  32. Rodriguez-Naranjo MI, Moy ML, Cantos-Villar E, Garcia-Parrilla MC. Comparative evaluation of the antioxidant activity of melatonin and related indoles. J. Food Compos. Anal. 28: 16-22 (2012) https://doi.org/10.1016/j.jfca.2012.07.001
  33. Dawidowicz AL, Wianowska D, Olszowy M. On practical problems in estimation of antioxidant activity of compounds by DPPH method. Food Chem. 131: 1037-1043 (2012) https://doi.org/10.1016/j.foodchem.2011.09.067
  34. Hoyle CHV, Santos JH. Cyclic voltammetric analysis of antioxidant activity in citrus fruits from Southeast Asia. Int. Food Res. J. 17: 937-946 (2010)
  35. Shalaby EA, Shanab AMM. Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian J. Geo-Marine Sci. 42: 556-564 (2013)
  36. Benzie IFF, Strain JJ. The ferric reducing ability of plasma as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 239: 70-76 (1996) https://doi.org/10.1006/abio.1996.0292
  37. Connor AM, Luby JJ, Hancock JF, Berkheimer S, Hanson EJ. Changes in fruit antioxidant activity among blueberry cultivars during cold-temperature storage. J. Agr. Food Chem. 50: 893-898 (2002) https://doi.org/10.1021/jf011212y
  38. Ou B, Hampsh-Woodill M, Prior RL. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescence probe. J. Agr. Food Chem. 49: 4619-4626 (2001) https://doi.org/10.1021/jf010586o
  39. Ximenes VF, Pessoa AS, Padovan CZ, Abrantes DC, Gomes FH, Maticoli MA, de Menezes ML. Oxidation of melatonin by AAPH-derived peroxyl radicals: evidence of a pro-oxidant effect of melatonin. Biochim. Biophys. Acta. 1790: 787-792 (2009) https://doi.org/10.1016/j.bbagen.2009.03.021
  40. Koppenol WH. Oxyradical reaction: From bond-dissociation energies to reduction potentials. FEBS Lett. 264: 165-167 (1990) https://doi.org/10.1016/0014-5793(90)80239-F
  41. Estevo MS, Carvalho LC, Ferreira LM, Fernandes E, Marques MMB. Analysis of the antioxidant activity of an indole library: cyclic voltammetry versus ROS scavenging activity. Tetrahedron Lett. 52: 101-106 (2011) https://doi.org/10.1016/j.tetlet.2010.10.172
  42. Shin HS, Kim SW. Lipid composition of perilla seed. J. Am. Oil Chem. Soc. 71: 619-622 (1994) https://doi.org/10.1007/BF02540589
  43. Garca-Luna PP, Lardone PJ, Herrera JL, Fernndez-Montesinos R, Guerrero JM, Pozo D, de la Puert C, Carrascosa-Salmoral MP. Melatonin is a phytochemical in olive oil. Food Chem. 104: 609-612 (2007) https://doi.org/10.1016/j.foodchem.2006.12.010