DOI QR코드

DOI QR Code

Design of Low Power Current Memory Circuit based on Voltage Scaling

Voltage Scaling 기반의 저전력 전류메모리 회로 설계

  • 여성대 (서울과학기술대학교 NID융합기술대학원) ;
  • 김종운 (서울과학기술대학교 NID융합기술대학원) ;
  • 조태일 (서울과학기술대학교 NID융합기술대학원) ;
  • 조승일 (일본 Yamagata Univ. Innovation Center for Organic Electronics) ;
  • 김성권 (서울과학기술대학교 NID융합기술대학원)
  • Received : 2015.12.24
  • Accepted : 2016.02.24
  • Published : 2016.02.25

Abstract

A wireless communication system is required to be implemented with the low power circuits because it uses a battery having a limited energy. Therefore, the current mode circuit has been studied because it consumes constant power regardless of the frequency change. However, the clock-feedthrough problem is happened by leak of stored energy in memory operation. In this paper, we suggest the current memory circuit to minimize the clock-feedthrough problem and introduce a technique for ultra low power operation by inducing dynamic voltage scaling. The current memory circuit was designed with BSIM3 model of $0.35{\mu}m$ process and was operated in the near-threshold region. From the simulation result, the clock-feedthrough could be minimized when designing the memory MOS Width of $2{\mu}m$, the switch MOS Width of $0.3{\mu}m$ and dummy MOS Width of $13{\mu}m$ in 1MHz switching operation. The power consumption was calculated with $3.7{\mu}W$ at the supply voltage of 1.2 V, near-threshold voltage.

무선통신시스템은 한정된 에너지를 갖는 배터리를 사용하기 때문에 저전력 회로로 구현되어야 하며, 이를 위하여 주파수와 상관없이 일정한 전력을 나타내는 전류모드 회로가 연구되어왔다. 본 논문에서는 초저전력 동작이 가능하도록 Dynamic Voltage Scaling 전원을 유도하며, 전류모드 신호처리 중 메모리 동작에서 저장된 에너지가 누설되는 Clock-Feedthrough 문제를 최소화하는 전류메모리 회로를 제안한다. $0.35{\mu}m$ 공정의 BSIM3 모델로 Near-threshold 영역의 전원 전압을 사용한 시뮬레이션을 진행한 결과, 1MHz의 스위칭 동작에서 $2{\mu}m$의 메모리 MOS Width, $0.3{\mu}m$의 스위치 MOS Width, $13{\mu}m$의 Dummy MOS Width로 설계할 때, Clock-Feedthrough의 영향을 최소화시킬 수 있었으며 1.2V의 Near-threshold 전원전압에서 소비전력은 $3.7{\mu}W$가 계산되었다.

Keywords

References

  1. H. Lee, H. Lee, and H. Shin, "A Study On Ubiquitous Sensor Network Technologies," J. of the Korea Institute of Electronic Communication Sciences, vol. 4, no. 1, Mar. 2009, pp. 70-77.
  2. G. Sim and J. Jang, "Design and Implementation of Wireless Multi communication Circuit Based On USN," J. of the Korea Contents Association, vol. 11, no. 8, Aug. 2011, pp. 33-42. https://doi.org/10.5392/JKCA.2011.11.8.033
  3. B. Kim and D. Kim, "Voltage regulator for baseband channel selection filters," J. of the Korea Institute of Electronic Communication Sciences, vol. 8, no. 11, Nov. 2013, pp. 1641-1646. https://doi.org/10.13067/JKIECS.2013.8.11.1641
  4. C. Lee, S. Lee, and D. Choi, "Communication Module Selection Algorithm for Energy Saving of Smartphone," J. of the Korea Contents Association, vol. 12, no. 5, May 2012, pp. 22-31. https://doi.org/10.5392/JKCA.2012.12.05.022
  5. S. Kim, "Current to Voltage Converter for Low Power OFDM Modem," J. of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 2, June 2008, pp. 90-96.
  6. Y. Park, J. Min, and S. Hwang, "Current-Mode Serial-to-Parallel and Parallel-to-Serial Converter for Current-Mode OFDM FFT LSI," The J. of the Institute of Webcasting, Internet and Telecommunication, vol. 9, no. 1, Feb. 2009, pp. 39-45.
  7. S. Kim, "Performance Improvement of Current Memory for Low Power Wireless Communication MODEM," J. of the Korea Institute of Electronic Communication Sciences, vol. 3, no. 2, June 2008, pp. 83-89.
  8. G. Balachandran and P. Allen, "Switched-Current Circuits in Digital CMOS Technology with Low Charge-Injection Errors," IEEE J. of Solid-States Circuits, vol. 37, no. 10, Oct. 2002, pp. 1271-1281. https://doi.org/10.1109/JSSC.2002.803019
  9. M. Goldenberg, R. Croman, and T. Fiez, "Accurate SI Filters Using RGC Integrators," IEEE J. of Solid-States Circuits, vol. 29, no. 11, Nov. 1994, pp. 1388-1395. https://doi.org/10.1109/4.328641
  10. Y. Park, S. Hwang, J. Cha, C. Yang, and S. Kim, "Design of Low-power Serial-to-Parallel and Parallel-to-Serial Converter using Current-cut method," The J. of Korea Information and Communications Society, vol. 34, no. 10, Oct. 2009, pp. 776-783.
  11. S. Kim, G. Park, and J. Cha, "$0.35-{\mu}m$ CMOS-process-based Voltage-to-current Converter Design for an Analog OFDM Device," J. of Korea Physical Society, vol. 55, no. 1, July 2009, pp. 336-340. https://doi.org/10.3938/jkps.55.336
  12. R. Bodnar, "High-Accuracy Current Memory in HV CMOS Technology," IEEE Trans. Circuits and Systems II: Express Briefs, vol. 60, no. 6, June 2013, pp. 321-325. https://doi.org/10.1109/TCSII.2013.2258251
  13. T. Fiez and D. Allstot, "CMOS Switched-Current Ladder Filters," IEEE J. of Solid-States Circuits, vol. 25, no. 6, Dec. 1990, pp. 1360-1367. https://doi.org/10.1109/4.62163