DOI QR코드

DOI QR Code

Analysis of Fluid-Structure Interaction by High Velocity Impact for Liquid Filled Cylindrical Container

고속충돌에 의한 원통형 액체 용기의 유체-구조 연성해석

  • Bae, Hongsu (Department of Civil Systems Engineering, Chungbuk National University) ;
  • Woo, Kyeongsik (School of Civil Engineering, Chungbuk National University) ;
  • Kim, In-Gul (Department of Aerospace Engineering, Chungnam National University) ;
  • Kim, Jong-Heon (Agency for Defense Development)
  • Received : 2015.06.23
  • Accepted : 2016.01.26
  • Published : 2016.02.01

Abstract

In this paper, fluid-structure of interaction behavior of a fluid-filled cylindrical polymer container impacted by a high speed spherical projectile was studied using ALE(Arbitrary Lagrangian Eulerian) method. The hydrodynamic ram phenomenon occurred by the impact projectile penetrating through the container was investigated by examining time histories of projectile velocity and fluid pressure and density. The analysis results were agreed reasonably well compared to those by experiments.

본 논문에서는 유체를 포함하고 있는 원통형 용기에 고속의 충격체가 관통하는 경우에 대하여 ALE(Arbitrary Lagrangian Eulerian) 방법을 사용하여 유체-구조 연성해석을 수행하였다. 해석모델은 물이 채워진 원통형 폴리머 용기를 고려하였으며, 상용유한요소해석 프로그램 LS-DYNA를 사용하여 연구를 수행하였다. 고속의 충격체가 유체를 포함하고 있는 용기에 충격하여 관통하면서 발생한 수압램 현상에 대해 충격체의 거동 시간이력, 유체의 압력 및 밀도 변화를 통하여 발생하는 유체-구조 상호작용 현상을 분석하였다. 해석 결과는 실험 결과에서 얻은 결과와 비교하여 타당성을 검증하였다.

Keywords

References

  1. Ball, R., The Fundamentals of Aircraft Combat Survivability Analysis and Design, 2nd Ed., AIAA, 2003
  2. Hinrichsen, R., Kurtz, A., Wang, J., Belcastro, C., and Park, S., L., "Modeling Projectile Damage in Transport Aircraft Wing Structure", AIAA Jounal, Vol. 46, 2008, pp. 328-335. https://doi.org/10.2514/1.26374
  3. Ball, R., "A Computer Program for The Geometrically Nonlinear Static and Dynamic Analysis of Arbitrary Loaded Shells of Revolution", Theory and User's Manual, NASA:CR-1987, 1972.
  4. Mcmillen, J., Harvey, E., "A Spark Shadowgraphic Study of Body Waves in Water, J. Applied Phisics, 1946.
  5. Vasudev, A. and Meehlma, J., "A Comparative Study of The Ballistic Performance of Glass Reinforced Plastic Materials", J. SAMPLE Quart , 1987.
  6. Cantwell, W. and Morton, J., "Influence of Target Geometry on The High Velocity Impact Response of CFRP", J. Composite Structure, 1988.
  7. Ball, R., "Aircraft Fuel Tank Vulnerability to Hydraulic Ram: Modification of the Northrup Finite Element Computer Code BR-1 to Include Fluid-structure Interaction", Theory and User's Manual for BR-1HR, 1972.
  8. Kimsey, K., "Numerical Simulation of Hydrodynamic Ram", Technical report, ARBRLTR-02217, US Army Ballistic Research Laboratory, 1980.
  9. Santini, P., Palmieri, D., and Marchetti, M., "Numerical Simulation of Fluid-Structure Interaction in Aircraft Fuel Tanks Subjected to Hydrodynamic Ram Penetration", 21st ICAS Congress, 1998.
  10. Souli, M., Olovsson, L., and Do, I., "ALE and Fluid-Structure Interaction Capabilities in LS-DYNA", 7th International LS-DYNA User Conference, 2002, pp. 27-36.
  11. Seddon, C., Moodie, K., Thyer, A., and Moatamedi, M., "Preliminary Analysis of Fuel Tank Impact", International Journal of Crashworthiness, Vol. 9, 2004, pp. 237-244. https://doi.org/10.1533/ijcr.2004.0277
  12. Varas, D., Lopez-Puente, J., and Zaera, R., "Numerical Modeling of The Hydrodynamic Ram Phenomenon", Int. J. Impact Engineering, Vol. 36, 2009, pp. 363-374. https://doi.org/10.1016/j.ijimpeng.2008.07.020
  13. Varas, D., Lopez-Puente, J., and Zaera, R., "Numerical Analysis of The Hydrodynamic Ram Phenomenon in Aircraft Fuel Tank", AIAA J., Vol. 50, 2012, pp. 1621-1630. https://doi.org/10.2514/1.J051613
  14. Boyd, R., Royles, R., and El-Deeb, K. M. M., "Simulation and Validation of UNDEX Phenomena Relating to Axisymmetric Structures", 6st International LS-DYNA Users Conference Simulation, 2000, pp. 21-36.
  15. Buchar, J., Rolc. S., Lazar, M., and Starek, M.,, "The Development of The Glass Lamincates Resistant to The Samll Arms Fire", 19st International Symposium of Ballistics, 2001, pp. 1439-1445.
  16. http://www.mtplastech.com/Product-Pet-Physical-Mechanical.aspx
  17. E. S. Go, I. G. Kim, S. H. Park, J. W. Park, J. H. Kim, "Measurement of Dynamic Strains on Cylindrical Vessel Subjected Hydrodynamic Ram Using PVDF Sensors", 2015 KSAS Annual Spring Conference, 2015, pp. 264-267.
  18. Mulliken, A.D. and Boyce, M.C., "Mechanics of the Rate-Dependent Elastic-Plastic Deformation of Glassy Polymers from Low to High Strain Rates", Int. J. Solids and Structures, Vol. 43, Iss. 5, 2006, pp. 1331-1356. https://doi.org/10.1016/j.ijsolstr.2005.04.016
  19. Kim, J.H., Kim, C.G., and Jun, S., "Analysis and Test of Hydrodynamic Ram in Welded Metallic Water Tank", Int. J. Aeronautical and Space Sciences, Vol. 16, No. 1, 2015, pp. 41-49. https://doi.org/10.5139/IJASS.2015.16.1.41