DOI QR코드

DOI QR Code

Freeze Cast Porous Mullite Ceramics and Recycling of Coal Fly Ash

동결주조 다공질 뮬라이트 세라믹스의 제조와 석탄회의 재활용

  • Kim, Kyu Heon (School of Materials Science and Engineering, Pusan National University) ;
  • Yoon, Seog Young (School of Materials Science and Engineering, Pusan National University) ;
  • Park, Hong Chae (School of Materials Science and Engineering, Pusan National University)
  • Received : 2015.10.02
  • Accepted : 2015.12.28
  • Published : 2016.02.27

Abstract

In order to fabricate porous mullite ceramics with controlled pore structure and improved mechanical strength, a freeze casting route has been processed using camphene mixed with tertiary-butyl alcohol (TBA) and coal fly ash/alumina as the solvent and the ceramic material, respectively. After sintering, the solidification characteristics of camphene and TBA solvent were evident in the pore morphology, i.e., dendritic and straight pore channels formed along the solidification directions of camphene and TBA ice, respectively, after sublimation. Also, the presence of microcracks was observed in the bodies sintered at $1500^{\circ}C$, mainly due to the difference in solidification volume change between camphene and TBA. The compressive strength of the sintered bodies was found generally to be dependent, in an inverse manner, on the porosity, which was mainly determined by the processing conditions. After sintering at $1300{\sim}1500^{\circ}C$ with 30~50 wt% solid loading, the resulting mullite ceramics showed porosity and compressive strength values in ranges of 83.8~43.1% and 3.7~206.8 MPa, respectively.

Keywords

References

  1. A. R. Studart, U. T. Gonzenbach, E. Tervoort and L. J. Gauckler, J. Am. Ceram. Soc., 89, 1771 (2006). https://doi.org/10.1111/j.1551-2916.2006.01044.x
  2. C. Tallon and G. V. Franks, J. Ceram. Soc. Jpn, 118, 147 (2011).
  3. W. M. Sigmund, N. S. Bell and L. Bergstrom, J. Am. Ceram. Soc., 83, 1557 (2000).
  4. R. Chen, C. A. Wang, Y. Huang, L. Ma and W. Lin, J. Am. Ceram. Soc., 90, 3478 (2007). https://doi.org/10.1111/j.1551-2916.2007.01957.x
  5. W. L. Li, K. Lu and J. Y. Walz, Int. Mater. Rev., 57, 37 (2012). https://doi.org/10.1179/1743280411Y.0000000011
  6. S. Deville, Adv. Eng. Mater., 10, 155 (2008). https://doi.org/10.1002/adem.200700270
  7. E. R. Rubinstein and M. E. Glicksman, J. Cryst. Growth, 112, 97 (1991). https://doi.org/10.1016/0022-0248(91)90915-R
  8. C. Q. Hong, X. H. Zhang, J. C. Han, J. C. Du and W. Zhang, Mater. Chem. Phys., 119, 359 (2010). https://doi.org/10.1016/j.matchemphys.2009.10.031
  9. E. Cadirli, N. Marasli, B. Bayender and M. Gunduz, Mater. Res. Bull., 35, 985 (2000). https://doi.org/10.1016/S0025-5408(00)00285-3
  10. R. Chen, Y. Huang, C. A. Wang and J. Qi, J. Am. Ceram. Soc., 90, 3424 (2007). https://doi.org/10.1111/j.1551-2916.2007.01915.x
  11. I. A. Akasy and J. A. Pask, J. Am. Ceram. Soc., 58, 507 (1975). https://doi.org/10.1111/j.1151-2916.1975.tb18770.x
  12. H. Schneider, K. Okada and J. Pask, Mullite and Mullite Ceramics, p. 100, John Wiley, New York, USA (1989).
  13. J. H. Kim, J. H. Lee, T. Y. Yang, S. Y. Yoon, B. K. Kim and H. C. Park, Ceram. Inter., 37, 2317 (2011). https://doi.org/10.1016/j.ceramint.2011.03.023
  14. T. Fukasawa, M. Ando, T. Ohji and S. Kanzaki, J. Am. Ceram. Soc., 84, 230 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  15. T. Fukasawa, Z. Y. Deng, M. Ando, T. Ohji and S. Kanzaki, J. Am. Ceram. Soc., 85, 2151 (2001).
  16. D. Koch, L. Andresen, T. Schmedders and G. Grathwohl, J. Sol-Gel Sci. Technol., 26, 149 (2003). https://doi.org/10.1023/A:1020718225164
  17. K. Araki and J. W. Halloran, J. Am. Ceram. Soc., 88, 1108 (2005). https://doi.org/10.1111/j.1551-2916.2005.00176.x
  18. Y. M. Park, T. Y. Yang, S. Y. Yoon, R. Stevens and H. C. Park, Mater. Sci. Eng. A, 454-455, 518 (2007). https://doi.org/10.1016/j.msea.2006.11.114
  19. C. W. Burnham, Carnegie Inst. Washington Year Book 63, 227 (1964).
  20. B. M. Kim, Y. K. Cho, S. Y. Yoon, R. Stevens and H. C. Park, Ceram. Inter., 35, 579 (2009). https://doi.org/10.1016/j.ceramint.2008.01.017
  21. M. F. de Souza, J. Yamamoto, I. Regiani, C. O. Paiva-Santos and D. P. F. de Souza, J. Am. Ceram. Soc., 83, 60 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01148.x
  22. T. Y. Yang, H. B. Ji, S. Y. Yoon, B. K. Kim and H. C. Park, Resour. Conservat. Recycl., 54, 816 (2010). https://doi.org/10.1016/j.resconrec.2009.12.012
  23. H. B. Ji, W. Y. Kim, T. Y. Yang, S. Y. Yoon, B. K. Kim and H. C. Park, J. Phys. Chem. Solids, 71, 503 (2010). https://doi.org/10.1016/j.jpcs.2009.12.022
  24. J. H. Lee, W. Y. Kim, T. Y. Yang, S. Y. Yoon, B. K. Kim and H. C. Park. Adv. Appl. Ceram., 110, 244 (2011). https://doi.org/10.1179/1743676111Y.0000000011
  25. J. H. Lee, H. J. Choi, S. Y. Yoon, B. K. Kim and H. C. Park, J. Porous Mater., 20, 219 (2013) https://doi.org/10.1007/s10934-012-9591-0
  26. K. H. Kim, S. Y. Yoon and H. C. Park, Materials, 7, 5982 (2014). https://doi.org/10.3390/ma7085982