DOI QR코드

DOI QR Code

Photoluminescence and Concentration Quenching Properties of BaMoO4:Tb3+ Phosphors

BaMoO4:Tb3+ 형광체의 발광과 농도 소광 특성

  • Cho, Shinho (Department of Materials Science and Engineering and Center for Green Fusion Technology, Silla University) ;
  • Kim, Jindae (Department of Materials Science and Engineering and Center for Green Fusion Technology, Silla University) ;
  • Hwang, Donghyun (Department of Materials Science and Engineering and Center for Green Fusion Technology, Silla University) ;
  • Cho, Seon-Woog (Department of Materials Science and Engineering and Center for Green Fusion Technology, Silla University)
  • 조신호 (신라대학교 신소재공학과, 녹색융합기술센터) ;
  • 김진대 (신라대학교 신소재공학과, 녹색융합기술센터) ;
  • 황동현 (신라대학교 신소재공학과, 녹색융합기술센터) ;
  • 조선욱 (신라대학교 신소재공학과, 녹색융합기술센터)
  • Received : 2015.11.12
  • Accepted : 2015.12.31
  • Published : 2016.02.27

Abstract

$BaMoO_4:Tb^{3+}$ phosphor powders were synthesized with different concentrations of $Tb^{3+}$ ions using the solid-state reaction method. XRD patterns showed that all the phosphors, irrespective of the concentration of $Tb^{3+}$ ions, had tetragonal systems with two main (112) and (004) diffraction peaks. The excitation spectra of the $Tb^{3+}$-doped $BaMoO_4$ phosphors consisted of an intense broad band centered at 290 nm in the range of 230-330 nm and two weak bands. The former broad band corresponded to the $4f^8{\rightarrow}4f^75d^1$ transition of $Tb^{3+}$ ions; the latter two weak bands were ascribed to the $^7F_2{\rightarrow}^5D_3$ (471 nm) and $^7F_6{\rightarrow}^5D_4$ (492 nm) transitions of $Tb^{3+}$. The main emission band, when excited at 290 nm, showed a strong green band at 550 nm arising from the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ ions. As the concentration of $Tb^{3+}$ increased from 1 to 10 mol%, the intensities of all the emission lines gradually increased, approached maxima at 10 mol% of $Tb^{3+}$ ions, and then showed a decreasing tendency with further increase in the $Tb^{3+}$ ions due to the concentration quenching effect. The critical distance between neighboring $Tb^{3+}$ ions for concentration quenching was calculated and found to be $12.3{\AA}$, which indicates that dipole-dipole interaction was the main mechanism for the concentration quenching of the $^5D_4{\rightarrow}^7F_5$ transition of $Tb^{3+}$ in the $BaMoO_4:Tb^{3+}$ phosphors.

Keywords

References

  1. S. Shivakumara, R. Saraf, S. Behera, N. Dhananjaya and H. Nagabhushana, Spectrochim. Acta A, 151, 141 (2015). https://doi.org/10.1016/j.saa.2015.06.045
  2. Y. Kojima, M. Numazawa, S. Kamei and N. Nishimiya, Int. J. Opt., 2012, 1 (2005).
  3. G. Zhu, Z. Ci, Y. Shi and Y. Wang, Mater. Res. Bull., 55, 146 (2014). https://doi.org/10.1016/j.materresbull.2014.04.030
  4. Y. Li and X. Liu, Opt. Mater., 42, 303 (2015). https://doi.org/10.1016/j.optmat.2015.01.018
  5. X. Lin, X. Qiao and X. Fan, Solid State Sci., 13, 579 (2011). https://doi.org/10.1016/j.solidstatesciences.2010.12.029
  6. C. Shivakumara and R. Saraf, Opt. Mater., 42, 178 (2015). https://doi.org/10.1016/j.optmat.2015.01.006
  7. P. Yang, C. Li, W. Wang, Z. Quan, S. Gai and J. Lin, J. Solid State Chem., 182, 2510 (2009). https://doi.org/10.1016/j.jssc.2009.07.009
  8. P. Du and J. S. Yu, Mater. Res. Bull., 70, 553 (2015). https://doi.org/10.1016/j.materresbull.2015.05.022
  9. X. F. Wang, G. H. Peng, N. Li, Z. H. Liang, X. Wang and J. L. Wu, J. Alloy. Comp., 599, 102 (2014). https://doi.org/10.1016/j.jallcom.2014.02.091
  10. X. Li, Z. Yang, L. Guan and Q. Guo, Mater. Lett., 63, 1096 (2009). https://doi.org/10.1016/j.matlet.2009.02.029
  11. M. Tutuianu, O. R. Inderwildi, W. G. Bessler and J. Warnatz, J. Phys. Chem. B, 110, 17484 (2006). https://doi.org/10.1021/jp055268x
  12. W. D. Kingery, H. K. Bowen and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., p. 131, John-Wiley and Sons, USA (1975).
  13. R. D. Shannon and C. T. Prewitt, Acta Crystallogr. B, 25, 925 (1969). https://doi.org/10.1107/S0567740869003220
  14. Z. Hao, J. Zhang, X. Zhang, S. Lu and X. Wang, J. Electrochem. Soc., 156, H193 (2009). https://doi.org/10.1149/1.3060382
  15. X. Mi, J. Sun, P. Zhou, H. Zhou, D. Song, K. Li, M. Shang and J. Lin, J. Mater. Chem. C, 3, 4471 (2015). https://doi.org/10.1039/C4TC02433H
  16. J. D. Kim and S. Cho, Korean J. Mater. Res., 24, 469 (2014). https://doi.org/10.3740/MRSK.2014.24.9.469
  17. J. Zhang, Y. Wang, Z. Zhang, Z. Wang and B. Liu, Mater. Lett., 62, 202 (2008). https://doi.org/10.1016/j.matlet.2007.04.101
  18. H. L. Li, Z. L. Wang, S. J. Xu and J. H. Hao, J. Electrochem. Soc., 156, J112 (2009). https://doi.org/10.1149/1.3095503
  19. L. R. P. Kassab, R. de Almeida, D. M. da Silva and C. B. de Araujo, J. App. Phys., 104, 093531 (2008). https://doi.org/10.1063/1.3010867
  20. L. Jiang, C. Chang, D. Mao and C. Feng, Mater. Sci. Eng. B., 103, 271 (2003). https://doi.org/10.1016/S0921-5107(03)00261-7
  21. S. Cho, J. Korean Phys. Soc., 64, 1529 (2014). https://doi.org/10.3938/jkps.64.1529
  22. J. S. Kumar, K. Pavani, A. M. Babu, N. K. Giri, S. B. Rai and L. R. Moorthy, J. Lumin., 130, 1916 (2010). https://doi.org/10.1016/j.jlumin.2010.05.006
  23. R. Naik, S. C. Prashantha, H. Nagabhushana, H. P. Nagaswarupa, K. S. Anantharaju, S. C. Sharma, B. M. Nagabhushana, H. B. Premkumar and K. M. Girish, J. Alloy. Comp., 617, 69 (2014). https://doi.org/10.1016/j.jallcom.2014.07.100
  24. D. L. Dexter, J. Chem. Phys., 21, 836 (1953). https://doi.org/10.1063/1.1699044
  25. S. Dutta, S. Som and S. K. Sharma, Dal. Trans., 42, 9654 (2013). https://doi.org/10.1039/c3dt50780g