Abstract
In this paper, we propose in this paper present a novel locality data allocation policy as COLD(Correlated Locality Data) allocation policy. COLD is defined as a set of data that will be updated together later. By distributing a COLD into a NAND block separately, it can preserve th locality. In addition, by handling multiple COLD simultaneously, it can obtain the parallelism among NAND chips. We perform two experiment to demonstrate the effectiveness of the COLD data allocation policy. First, we implement COLD detector, and then, analyze a well-known workload. And we confirm the amount of COLD found depending on the size of data constituting the COLD. Secondly, we compared the traditional page-level mapping policy and COLD for garbage collection overhead in actual development board Cosmos OpenSSD. Experimental results have shown that COLD data allocation policy is significantly reduces the garbage collection overhead. Also, we confirmed that garbage collection overhead vary depending on the COLD size.