DOI QR코드

DOI QR Code

Anti-Inflammatory Effect of Chondrus nipponicus Yendo Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells

LPS로 유도된 RAW 264.7 세포에 대한 가락진두발 에탄올 추출물의 항염증 효과

  • Kim, Min-Ji (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Bae, Nan-Yong (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Kim, Koth-Bong-Woo-Ri (Institute of Fisheries Sciences, Pukyong National University) ;
  • Park, Ji-Hye (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Park, Sun-Hee (Department of Food Science & Technology/Institute of Food Science, Pukyong National University) ;
  • Jang, Mi-Ran (Health Functional Food Policy Division, Ministry of Food and Drug Safety) ;
  • Ahn, Dong-Hyun (Department of Food Science & Technology/Institute of Food Science, Pukyong National University)
  • 김민지 (부경대학교 식품공학과/식품연구소) ;
  • 배난영 (부경대학교 식품공학과/식품연구소) ;
  • 김꽃봉우리 (부경대학교 수산과학연구소) ;
  • 박지혜 (부경대학교 식품공학과/식품연구소) ;
  • 박선희 (부경대학교 식품공학과/식품연구소) ;
  • 장미란 (식품의약품안전처 건강기능식품정책과) ;
  • 안동현 (부경대학교 식품공학과/식품연구소)
  • Received : 2015.11.05
  • Accepted : 2016.01.27
  • Published : 2016.02.29

Abstract

The anti-inflammatory activity of ethanol extract from Chondrus nipponicus Yendo (CNYEE) was investigated by measuring production of a lipopolysaccharide-induced inflammatory response mediator. CNYEE had no cytotoxic effects on proliferation of macrophages compared to the control. CNYEE significantly inhibited (over 50%) NO production at $50{\mu}g/mL$, with inhibitory effects on expression levels of cytokines such as interleukin (IL)-6, tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), and IL-$1{\beta}$. In particular, IL-6 inhibitory activity of CNYEE was higher than 70% at $100{\mu}g/mL$. CNYEE also reduced protein expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and nuclear factor (NF)-${\kappa}B$ in a dose-dependent manner. CNYEE also significantly reduced phosphorylation of p38, extracellular signal-regulated kinase, and c-Jun N-terminal kinase. Therefore, these results suggest that CNYEE may have anti-inflammatory effects by modulating the NF-${\kappa}B$ and mitogen-activated protein kinases signaling pathways and may be used as an anti-inflammatory therapeutic material.

본 연구에서는 lipopolysaccharide(LPS)로 자극한 마우스 대식세포인 RAW 264.7 세포에서 가락진두발 에탄올 추출물(CNYEE)의 항염증 효과를 알아보기 위하여 nitric oxide(NO)와 pro-inflammatory cytokine의 분비량을 확인하였다. 그 결과 CNYEE 모든 농도에서 LPS만을 처리한 대조군과 비교하였을 때 유의성 있게 NO와 pro-inflammatory cytokine의 분비량을 저해하였으며, 특히 $100{\mu}g/mL$ 농도에서는 IL-6의 분비량을 70% 이상 억제하였고, TNF-${\alpha}$ 및 IL-$1{\beta}$의 분비량은 50% 이상의 억제 효과를 나타내었다. CNYEE에 의한 염증매개물질의 분비 감소가 전사인자인 nuclear factor-${\kappa}B$(NF-${\kappa}B$)의 핵 내 전이 pathway를 저해함으로써 나타난 결과인지 확인하기 위하여 iNOS, COX-2 및 NF-${\kappa}B$ p65의 단백질 발현량을 관찰한 결과, 비교적 낮은 농도인 $50{\mu}g/mL$에서 40% 이상의 저해능을 보인 것으로 보아 NO와 cytokine의 분비 억제 결과가 NF-${\kappa}B$ pathway를 저해함으로써 나타난 것임을 유추할 수 있었다. 또한 LPS에 의해 증가한 mitogen-activated protein kinases의 인산화를 확인한 결과, CNYEE 처리에 의해 농도 의존적으로 유의성 있게 저해되었다. 이러한 결과를 종합해볼 때 가락진두발 에탄올 추출물은 염증매개물질의 분비를 효과적으로 저해함으로써 추후 천연물로서 염증 치료제의 개발이 가능할 것으로 생각한다.

Keywords

References

  1. Willoughby DA. 1975. Heberden Oration, 1974. Human arthritis applied to animal models. Towards a better therapy. Ann Rheum Dis 34: 471-478. https://doi.org/10.1136/ard.34.6.471
  2. Miyake K. 2004. Innate recognition of lipopolysaccharide by Toll-like receptor 4-MD-2. Trends Microbiol 12: 186-192. https://doi.org/10.1016/j.tim.2004.02.009
  3. Kim YW, Zhao RJ, Park SJ, Lee JR, Cho IJ, Yang CH, Kim SG, Kim SC. 2008. Anti-inflammatory effects of liquiritigenin as a consequence of the inhibition of NF-${\kappa}B$-dependent iNOS and proinflammatory cytokines production. Br J Pharmacol 154: 165-173. https://doi.org/10.1038/bjp.2008.79
  4. Dhawan P, Richmond A. 2002. A novel NF-${\kappa}B$-inducing kinase-MAPK signaling pathway up-regulates NF-${\kappa}B$ activity in melanoma cells. J Biol Chem 277: 7920-7928. https://doi.org/10.1074/jbc.M112210200
  5. Hofseth LJ, Ying L. 2006. Identifying and defusing weapons of mass inflammation in carcinogenesis. Biochim Biophys Acta 1765: 74-84.
  6. Jeong DH, Kim KBWR, Kang BK, Jung SA, Kim HJ, Jeong HY, Bark SW, Ahn DH. 2012. Anti-inflammatory activity of the Undaria pinnatifida water extract. J Appl Biol Chem 55: 221-225. https://doi.org/10.3839/jabc.2012.035
  7. Kang BK, Kim KBWR, Kim MJ, Bark SW, Pak WM, Kim BR, Ahn NK, Choi YU, Ahn DH. 2014. Anti-inflammatory activity of an ethanol extract of Laminaria japonica root on lipopolysaccharide-induced inflammatory response in RAW 264.7 cells. Korean J Food Sci Technol 46: 729-733. https://doi.org/10.9721/KJFST.2014.46.6.729
  8. Lee JH, Kim ND, Choi JS, Kim YJ, Heo MY, Lim SY, Park KY. 1998. Inhibitory effects of the methanolic extract of an edible brown alga, Ecklonia stolonifera and its component, phloroglucinol on aflatoxin $B_1$ mutagenicity in vitro (Ames test) and on benzo(a)pyrene or N-methyl N-nitrosourea clastogenicity in vivo (mouse micronucleus test). Nat Prod Sci 4: 105-114.
  9. Kim HS, Kim GJ. 1998. Effects of the feeding Hizikia fusiforme (Harvey) Okamura on lipid composition of serum in dietary hyperlipidemic rats. J Korean Soc Food Sci Nutr 27: 718-723.
  10. Nagayama K, Iwamura Y, Shibata T, Hirayama I, Nakamura T. 2002. Bactericidal activity of phlorotannins from the brown alga Ecklonia kurome. J Antimicrob Chemother 50: 889-893. https://doi.org/10.1093/jac/dkf222
  11. Bae SJ. 2004. Studies on the antioxidative and antimicrobial effects of Chondria crassicaulis. J Life Sci 14: 411-416. https://doi.org/10.5352/JLS.2004.14.3.411
  12. Shin JH, Choi DJ, Lim HC, Seo JK, Lee SJ, Choi SY, Sung NJ. 2006. Nutrients and antioxidant activity of red seaweeds. J Life Sci 16: 400-408. https://doi.org/10.5352/JLS.2006.16.3.400
  13. Bae NY, Kim MJ, Kim KBWR, Ahn NK, Choi YU, Park JH, Park SH, Ahn DH. 2015. Anti-inflammatory effect of ethanol extract from Grateloupia elliptica Holmes on lipopolysaccharide-induced inflammatory responses in RAW 264.7 cells and mice ears. J Korean Soc Food Sci Nutr 44: 1128-1136. https://doi.org/10.3746/jkfn.2015.44.8.1128
  14. Park YM, Won JH, Yun KJ, Ryu JH, Han YN, Choi SK, Lee KT. 2006. Preventive effect of Ginkgo biloba extract (GBB) on the lipopolysaccharide-induced expressions of inducible nitric oxide synthase and cyclooxygenase-2 via suppression of nuclear factor-${\kappa}B$ in RAW 264.7 cells. Biol Pharm Bull 29: 985-990. https://doi.org/10.1248/bpb.29.985
  15. Lee ST, Jeong YR, Ha MH, Kim SH, Byun MW, Jo SK. 2000. Induction of nitric oxide and TNF-${\alpha}$ by herbal plant extracts in mouse macrophages. J Korean Soc Food Sci Nutr 29: 342-348.
  16. Sheeba MS, Asha VV. 2009. Cardiospermum halicacabum ethanol extract inhibits LPS induced COX-2, TNF-${\alpha}$ and iNOS expression, which is mediated by NF-${\kappa}B$ regulation, in RAW264.7 cells. J Ethnopharmacol 124: 39-44. https://doi.org/10.1016/j.jep.2009.04.020
  17. Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
  18. Towbin H, Staehelin T, Gordon J. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci USA 76: 4350-4354. https://doi.org/10.1073/pnas.76.9.4350
  19. Kang BK, Kim KBWR, Kim MJ, Bark SW, Pak WM, Ahn NK, Choi YU, Bae NY, Park JH, Ahn DH. 2015. Anti-inflammatory effect of Sargassum coreanum ethanolic extract through suppression of NF-${\kappa}B$ pathway in LPS induced RAW264.7 cells in mice. Microbiol Biotechnol Lett 43: 112-119. https://doi.org/10.4014/mbl.1504.04008
  20. Jeong H, Sung M, Kim Y, Ham H, Choi Y, Lee J. 2012. Anti-inflammatory activity of Salvia plebeia R. Br. leaf through heme oxygenase-1 induction in LPS-stimulated RAW 264.7 macrophages. J Korean Soc Food Sci Nutr 41: 888-894. https://doi.org/10.3746/jkfn.2012.41.7.888
  21. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeong JH. 2012. Anti-inflammatory effects of extracts from Ligustrum ovalifolium H. leaves on RAW264.7 macrophages. J Korean Soc Food Sci Nutr 41: 1205-1210. https://doi.org/10.3746/jkfn.2012.41.9.1205
  22. Kim MJ, Bae NY, Kim KBWR, Park JH, Park SH, Cho YJ, Ahn DH. 2015. Anti-inflammatory effect of Zostera marina ethanolic extract on LPS-induced RAW264.7 cells and mouse model. Korean Soc Biotechnol Bioeng J 30: 182-190.
  23. Majdalawieh A, Ro HS. 2010. Regulation of $I{\kappa}B{\alpha}$ function and NF-${\kappa}B$ signaling: AEBP1 is a novel proinflammatory mediator in macrophages. Mediators Inflamm 2010: 823821.
  24. Hyun TK, Ko YJ, Kim EH, Chung IM, Kim JS. 2015. Anti-inflammatory activity and phenolic composition of Dendropanax morbifera leaf extracts. Ind Crops Prod 74: 263-270. https://doi.org/10.1016/j.indcrop.2015.05.002
  25. Nathan C, Xie QW. 1994. Nitric oxide synthases: roles, tolls, and controls. Cell 78: 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  26. Bhattacharyya A, Pathak S, Datta S, Chattopadhyay S, Basu J, Kundu M. 2002. Mitogen-activated protein kinases and nuclear fator-${\kappa}B$ regulate Helicobacter pylori-mediated interleukin-8 release from macrophages. Biochem J 368: 121-129. https://doi.org/10.1042/bj20020555
  27. Chen X, Miao J, Wang H, Zhao F, Hu J, Gao P, Wang Y, Zhang L, Yan M. 2015. The anti-inflammatory activities of Ainsliaea fragrans Champ. extract and its components in lipopolysaccharide-stimulated RAW264.7 macrophages through inhibition of NF-${\kappa}B$ pathway. J Ethnopharmacol 170: 72-80. https://doi.org/10.1016/j.jep.2015.05.004
  28. Lebovic DI, Bentzien F, Chao VA, Garrett EN, Meng YG, Taylor RN. 2000. Induction of an angiogenic phenotype in endometriotic stromal cell cultures by interleukin-$1{\beta}$. Mol Hum Reprod 6: 269-275. https://doi.org/10.1093/molehr/6.3.269
  29. Jeong DH, Kim KBWR, Kim MJ, Kang BK, Bark SW, Pak WM, Kim BR, Ahn NK, Choi YU, Ahn DH. 2014. Anti-inflammatory effect of ethanol extract from Sargassum fulvellumon lipopolysaccharide induced inflammatory responses in RAW 264.7 cells and mice ears. J Korean Soc Food Sci Nutr 43: 1158-1165. https://doi.org/10.3746/jkfn.2014.43.8.1158
  30. Kim DH, Hwang EY, Son JH. 2013. Anti-inflammatory activity of Carthamus tintorious seed extract in Raw 264.7 cells. J Life Sci 23: 55-62. https://doi.org/10.5352/JLS.2013.23.1.55
  31. Miyasaka N, Hirata Y. 1997. Nitric oxide and inflammatory arthritides. Life Sci 61: 2073-2081. https://doi.org/10.1016/S0024-3205(97)00585-7
  32. Simmons ML, Murphy S. 1992. Induction of nitric oxide from glial cells. J Neurochem 59: 897-905. https://doi.org/10.1111/j.1471-4159.1992.tb08328.x
  33. Martel-Pelletier J, Pelletier JP, Fahmi H. 2003. Cyclooxygenase-2 and prostaglandins in articular tissues. Semin Arthritis Rheum 33: 155-167. https://doi.org/10.1016/S0049-0172(03)00134-3
  34. Needleman P, Isakson PC. 1997. The discovery and function of COX-2. J Rheumatol 49: 6-8.
  35. Seybold VS, Jia YP, Abrahams LG. 2003. Cyclo-oxygenase-2 contributes to central sensitization in rats with peripheral inflammation. Pain 105: 47-55. https://doi.org/10.1016/S0304-3959(03)00254-9
  36. Xie QW, Whisnant R, Nathan C. 1993. Promoter of the mouse gene encoding calcium-independent nitric oxide synthase confers inducibility by interferon ${\gamma}$ and bacterial lipopolysaccharide. J Exp Med 177: 1779-1784. https://doi.org/10.1084/jem.177.6.1779
  37. Robinson MJ, Cobb MH. 1997. Mitogen-activated protein kinase pathways. Curr Opin Cell Biol 9: 180-186. https://doi.org/10.1016/S0955-0674(97)80061-0
  38. Dong C, Davis RJ, Flavell RA. 2002. MAP kinases in the immune response. Annu Rev Immunol 20: 55-72. https://doi.org/10.1146/annurev.immunol.20.091301.131133
  39. Kim HG, Shrestha B, Lim SY, Yoon DH, Chang WC, Shin DJ, Han SK, Park SM, Park JH, Park HI, Sung JM, Jang Y, Chung N, Hwang KC, Kim TW. 2006. Cordycepin inhibits lipopolysaccharide-induced inflammation by the suppression of NF-${\kappa}B$ through Akt and p38 inhibition in RAW 264.7 macrophage cells. Eur J Pharmacol 545: 192-199. https://doi.org/10.1016/j.ejphar.2006.06.047
  40. Park JS, Lee EJ, Lee JC, Kim WK, Kim HS. 2007. Anti-inflammatory effects of short chain fatty acids in IFN-${\gamma}$-stimulated RAW 264.7 murine macrophage cells: involvement of NF-${\kappa}B$ and ERK signaling pathways. Int Immunopharmacol 7: 70-77. https://doi.org/10.1016/j.intimp.2006.08.015

Cited by

  1. Anti-Inflammatory Effect of Ethanol Extract from Grateloupia crispata on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells and Mice Ears vol.45, pp.8, 2016, https://doi.org/10.3746/jkfn.2016.45.8.1090
  2. Inhibitory Activity of Sargassum hemiphyllum Ethanol Extract on Inflammatory Response in LPS-induced RAW 264.7 Cells and Mouse Model vol.32, pp.4, 2017, https://doi.org/10.7841/ksbbj.2017.32.4.319
  3. LPS로 유발한 대식세포의 염증반응과 마우스 귀 부종에 대한 구멍갈파래 에탄올 추출물의 항염증 효과 vol.44, pp.4, 2016, https://doi.org/10.4014/mbl.1609.09006
  4. LPS로 유도된 RAW 264.7 Cell과 마우스 모델에 대한 넓패(Ishige sinicola) 에탄올 추출물의 항염증 효과 vol.24, pp.8, 2016, https://doi.org/10.11002/kjfp.2017.24.8.1149
  5. LPS로 유도한 Raw 264.7 세포에서 A.C.C. 추출물의 항염증 효과 vol.18, pp.12, 2016, https://doi.org/10.5762/kais.2017.18.12.503
  6. 다시마 물 추출액과 발효액의 항산화 및 항염증 활성 vol.29, pp.5, 2016, https://doi.org/10.5352/jls.2019.29.5.596