DOI QR코드

DOI QR Code

Excellent Carbon Monoxide Sensing Performance of Au-Decorated SnO2 Nanofibers

  • Kim, Jae-Hun (Department of Materials Science and Engineering, Inha University) ;
  • Zheng, Yifang (Department of Materials Science and Engineering, Inha University) ;
  • Mirzaei, Ali (The Research Institute of Industrial Science, Hanyang University) ;
  • Kim, Sang Sub (Department of Materials Science and Engineering, Inha University)
  • Received : 2016.10.01
  • Accepted : 2016.11.14
  • Published : 2016.12.27

Abstract

Nanofibers(NFs), because of their high surface area and nanosized grains, have appropriate morphologies for use in chemiresistive-type sensors for gas detection applications. In this study, a highly sensitive and selective CO gas sensing material based on Au-decorated $SnO_2$ NFs was fabricated by electrospinning. $SnO_2$ NFs were synthesized by electrospinning and subsequently decorated with various amounts of Au nanoparticles(NPs) by sputtering; this was followed by thermal annealing. Different characterizations showed the successful formation of Au-decorated $SnO_2$ NFs. Gas sensing tests were performed on the fabricated sensors, which showed bell-shaped sensing behavior with respect to the amount of Au decoration. The best CO sensing performance, with a response of ~20 for 10 ppm CO, was obtained at an optimized amount of Au (2.6 at.%). The interplay between Au and $SnO_2$ in terms of the electronic and chemical sensitization by Au NPs is responsible for the great improvement in the CO sensing capability of pure $SnO_2$ NFs, suggesting that Au-decorated $SnO_2$ NFs can be a promising material for fabricating highly sensitive and selective chemiresistive-type CO gas sensors.

Keywords

References

  1. A. Mirzaei, S. Park, G. J. Sun, H. Kheel and C. Lee, J. Hazard. Mater., 305, 130 (2016). https://doi.org/10.1016/j.jhazmat.2015.11.044
  2. W. Durante, F. K. Johnson and R. A. Johnson, J. Cell. Mol. Med., 10, 672 (2006). https://doi.org/10.1111/j.1582-4934.2006.tb00427.x
  3. G. F. Fine, L. M. Cavanagh, A. Afonja amd R. Binions, Sensors, 10, 5469 (2010). https://doi.org/10.3390/s100605469
  4. P. Montuschi, S. A. Khartimonov and P. J. Barnes, Chest, 120, 496 (2001). https://doi.org/10.1378/chest.120.2.496
  5. P. Patnaik, A comprehensive guide to the hazardous properties of chemical substances, 3rd ed., p.403, John wiley & sons, inc., USA, (2007).
  6. G. Korotcenkov, V. Brinzari and B. K. Cho, Microchim. Acta, 183, 1033 (2016). https://doi.org/10.1007/s00604-015-1741-z
  7. T. Yanagimotoa, Y. T. Yu and K. Kaneko, Sens. Actuators, B 166-167, 31 (2012). https://doi.org/10.1016/j.snb.2011.11.047
  8. M. R. Yu, R. J. Wu and M. Chavali, Sens. Actuators, B 153, 321 (2011). https://doi.org/10.1016/j.snb.2010.09.071
  9. S. Das and V. Jayaraman, Progr. Mater. Sci., 66, 112 (2014). https://doi.org/10.1016/j.pmatsci.2014.06.003
  10. X. W. Lou, Y. Wang, C. L. Yuan, J. Y. Lee and L. A. Archer, Adv. Mater., 18, 2325 (2006). https://doi.org/10.1002/adma.200600733
  11. L. H. Jiang, G. Q. Sun, Z. H. Zhou, S. G. Sun, Q. Wang, S. Y. Yan, H. Q. Li, J. Tian, J. S. Guo and B. Zhou, J. Phys. Chem. B, 109, 8774 (2005).
  12. S. L. Kuo and N. L. Wu, Electrochem. Solid State Lett., 6, A85 (2003). https://doi.org/10.1149/1.1563872
  13. H. J. Snaith and C. Ducati, Nano Lett., 10, 1259 (2010). https://doi.org/10.1021/nl903809r
  14. H. J. Kim and J. H. Lee, Sens. Actuators, B 192, 607 (2014). https://doi.org/10.1016/j.snb.2013.11.005
  15. J. Kaur, R. Kumar and M. C. Bhatnagar, Sens. Actuators, B 126, 478 (2007). https://doi.org/10.1016/j.snb.2007.03.033
  16. Q. Wang, C. Wang, H. Sun, P. Sun, Y. Wang, J. Lin and G. Lu, Sens. Actuators, B 222, 257 (2011).
  17. C. Liewhiran, N. Tamaekong, A. Wisitsoraat and S. Phanichphant, Sensors, 9, 8996 (2009). https://doi.org/10.3390/s91108996
  18. X. Kong and Y. Li, Sens. Actuators, B 105, 449 (2005). https://doi.org/10.1016/j.snb.2004.07.001
  19. F. Pourfayaz, A. Khodaddadi, Y. Mortazavi and S. S. Mohajerzadeh, Sens. Actuators, B 108, 172 (2005). https://doi.org/10.1016/j.snb.2004.12.107
  20. A. K. Nayak, R. Ghosh, S. Santra, P. K. Guha and D. Pradhan, Nanoscale, 7, 29 (2015).
  21. H. Du, J. Wang, M. Su, P. Yao, Y. Zheng and N. Yu, Sens. Actuators, B 166-167, 746 (2012). https://doi.org/10.1016/j.snb.2012.03.055
  22. P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu and G. Lu, ACS Appl. Mater. Interfaces, 7, 19119 (2015). https://doi.org/10.1021/acsami.5b04751
  23. M. M. Rahman, S. B. Khan, A. Jamal, M. Faisal and A. M. Asiri, Talanta, 95, 18 (2012). https://doi.org/10.1016/j.talanta.2012.03.027
  24. L. Liu, Y. Zhang, G. Wang, S. Li, L. Wang, Y. Han, X. Jiang and A. Wei, Sens. Actuators, B 160, 448 (2011). https://doi.org/10.1016/j.snb.2011.08.007
  25. T. Kim and B. Guo, J. Ind. Eng. Chem., 17, 158 (2011). https://doi.org/10.1016/j.jiec.2010.12.016
  26. J. Zhang, X. Liu, S. Wu, B. Cao and S. Zheng, Sens. Actuators, B 169, 61 (2012). https://doi.org/10.1016/j.snb.2012.02.070
  27. A. S. M. I. Uddin, K. W. Lee and G. S. Chung, Sens. Actuators, B 216, 33 (2015). https://doi.org/10.1016/j.snb.2015.04.028
  28. J. H. Kim, H. W. Kim and S. S. Kim, Sens. Actuators, B 239, 578 (2017). https://doi.org/10.1016/j.snb.2016.08.071
  29. W. Yuanda, T. Maosong, H. Xiuli, Z. Yushu, D. Guorui, Sens. Actuators, B 79, 187 (2001). https://doi.org/10.1016/S0925-4005(01)00873-5
  30. S. Park, G. J. Sun, C. Jin, H. W. Kim, S. Lee and C. Lee, ACS Appl. Mater. Interfaces, 8, 2805 (2016). https://doi.org/10.1021/acsami.5b11485
  31. S. Kim, S. Park, S. Park and C. Lee, Sens. Actuators, B 209, 180 (2015). https://doi.org/10.1016/j.snb.2014.11.106
  32. R. K. Joshi, Q. Hu, F. Alvi, N. Joshi and A. Kumar, J. Phys. Chem. C, 113, 16199 (2009). https://doi.org/10.1021/jp906458b
  33. M. Murdoch, G. I. N. Waterhouse, M. A. Nadeem, J. B. Metson, M. A. Keane, R. F. Howe, J. Llorca and H. Idriss,. Nat. Chem., 3, 489 (2011). https://doi.org/10.1038/nchem.1048
  34. J. Y. Park, S. W. Choi and S. S. Kim, J. Phys. Chem. C, 115, 12774 (2011). https://doi.org/10.1021/jp202113x
  35. S. Bai, C. Chen, D. Zhang, R. Luo, D. Li, A. Chen and C. C. Liu, Sens. Actuators, B 204, 754 (2014). https://doi.org/10.1016/j.snb.2014.08.017
  36. L. Xu, H. Song, B. Dong, Y. Wang, J. Chen and X. Bai, Inorg. Chem., 49, 10590 (2010). https://doi.org/10.1021/ic101602a
  37. X. Jiaqiang, C. Yuping, L. Yadong and S. Jianian, J. Mater. Sci., 40, 2919 (2005). https://doi.org/10.1007/s10853-005-2435-4
  38. W. Zheng, X. Lu, W. Wang, Z. Li, H. Zhang, Y. Wang, Z. Wang and C. Wang, Sens. Actuators, B 142, 61 (2009). https://doi.org/10.1016/j.snb.2009.07.031
  39. S. Park, H. Kim, C. Jin, S. W. Choi and S. S. Kim, C. Lee, Thermochim. Acta, 542, 69 (2012). https://doi.org/10.1016/j.tca.2011.12.002
  40. Z. U. Abideen, A. Katoch, J. H. Kim, Y. J. Kwon, H. W. Kim and S. S. Kim, Sens. Actuators, B 221, 1499 (2015). https://doi.org/10.1016/j.snb.2015.07.120
  41. A. Greiner and J. H. Wendorff, Angew. Chem., Int. Ed., 46, 5670 (2007). https://doi.org/10.1002/anie.200604646
  42. A. L. Yarin, Polym. Adv. Technol., 22, 310 (2011). https://doi.org/10.1002/pat.1781
  43. S. Wei, G. Zhao, W. Du and Q. Tian, Vacuum, 124, 32 (2016). https://doi.org/10.1016/j.vacuum.2015.11.010
  44. Z. Zhang, X. Li, C. Wang, L. Wei, Y. Liu and C. Shao, J. Phys. Chem. C, 113, 19397 (2009). https://doi.org/10.1021/jp9070373
  45. J. S. Lee, A. Katoch, J. H. Kim and S. S. Kim, Sens. Actuators, B 222, 307 (2016). https://doi.org/10.1016/j.snb.2015.08.037
  46. S. Park, S. Kim, S. Park, W. I. Lee and C. Lee, Sensors, 14, 15849 (2014). https://doi.org/10.3390/s140915849
  47. G. Korotcenkov, Sens. Actuators, B 107, 209 (2005). https://doi.org/10.1016/j.snb.2004.10.006
  48. S. Park, G. J. Sun, H. Kheel, S. K. Hyun, C. Jin and C. Lee, Met. Mater. Int., 22, 156 (2016). https://doi.org/10.1007/s12540-015-5376-8
  49. I. S. Hwang, J. K. Choi, H. S. Woo, S. J. Kim, S. Y. Jung, T. Y. Seong, I. D. Kim and J. H. Lee, ACS Appl. Mater. Interfaces, 3, 3140 (2011). https://doi.org/10.1021/am200647f
  50. E. Wongrat, N. Hongsith, D. Wongratanaphisan, A. Gardchareon and S. Choopun, Sens. Actuators, B 171-172, 230 (2012). https://doi.org/10.1016/j.snb.2012.03.050
  51. H. Li, J. Xu, Y. Zhu, X. Chen and Q. Xiang, Talanta, 82, 458 (2010). https://doi.org/10.1016/j.talanta.2010.04.053
  52. M. Matsumiya, F. B. Qiu, W. Shin, N. Izu, I. matsubara, N. Murayama and S. Kanzaki, J. Electrochem. Soc. 151, H7 (2004). https://doi.org/10.1149/1.1630810
  53. G. Korotcenkov, B. K. Cho, L. Gulinac and V. Tolstoy, Sens. Actuators, B 141, 610 (2009). https://doi.org/10.1016/j.snb.2009.06.001
  54. G. Neri, A. Bonavita, C. Milone and S. Galvagno, Sens. Actuators, B 93, 402 (2003). https://doi.org/10.1016/S0925-4005(03)00188-6
  55. J. H. Kim, P. Wu, H. W. Kim and S. S. Kim, ACS Appl. Mater. Interfaces, 8, 7173 (2016). https://doi.org/10.1021/acsami.6b01116
  56. M. Haruta, T. Kobayashi, H. Sano and N. Yamada, Chem. Lett., 2, 405 (1987).
  57. A. Mirzaei, B. Hashemi and K. Janghorban, J. Mater. Sci.: Mater. Electron., 27, 3109 (2016). https://doi.org/10.1007/s10854-015-4200-z
  58. A. Mirzaei, K. Janghorban, B. Hashemi, A. Bonavita, M. Bonyani, S. G. Leonardi and G. Neri, Nanomaterials, 5, 737 (2015). https://doi.org/10.3390/nano5020737
  59. N. S. Ramgir, M. Kaur, P. K. Sharma, N. Datta, S. Kailasaganapathi, S. Bhattacharya, A. K. Debnath, D. K. Aswal and S. K. Gupta, Sens. Actuators, B 187, 313 (2013). https://doi.org/10.1016/j.snb.2012.11.079
  60. Y. J. Kwon, H. G. Na, S. Y. Kang, M. S. Choi, J. H. Bang, T. W. Kim, A. Mirzaei and H. W. Kim, Sens. Actuators, B 239, 180 (2017). https://doi.org/10.1016/j.snb.2016.07.177
  61. J. Guo, J. Zhang, H. Gong, D. Ju and B. Cao, Sens. Actuators, B 226, 266 (2016). https://doi.org/10.1016/j.snb.2015.11.140
  62. H. Yamaura, Y. Iwasaki, S. Hirao and H. Yahiro, Sens. Actuators, B 153, 465 (2011). https://doi.org/10.1016/j.snb.2010.10.044
  63. G. Neri, A. Bonavita, G. Micali, G. Rizzo, E. Callone and G. Carturan, Sens. Actuators, B 132, 224 (2008). https://doi.org/10.1016/j.snb.2008.01.030
  64. M. Hjiri, L. E. Mir, S. G. Leonardi, A. Pistone, L. Mavilia and G. Neri, Sens. Actuators, B 196, 413 (2014). https://doi.org/10.1016/j.snb.2014.01.068
  65. G. E. Buono-Core, A. H. Klahn, G. Cabello and L. Lillo, Polyhedron, 62, 1 (2013). https://doi.org/10.1016/j.poly.2013.06.028
  66. J. H. Yu and G. M. Choi, Sens. Actuators, B 75, 56 (2001). https://doi.org/10.1016/S0925-4005(00)00742-5
  67. J. T. McCue and J. Y. Ying, Chem. Mater., 19, 1009 (2007). https://doi.org/10.1021/cm0617283
  68. H. Yamaura, T. Jinkawa, J. Tamaki, K. Moriya, N. Miura and N. Yamazoe, Sens. Actuators, B 36, 325 (1996). https://doi.org/10.1016/S0925-4005(97)80090-1
  69. W. Zeng, Y. Li, B. Miao, L. Lin and Z. Wang, Sens. Actuators, B 191, 1 (2014). https://doi.org/10.1016/j.snb.2013.09.092
  70. C. T. Wang and M. T. Chen, Sens. Actuators, B 150, 360 (2010). https://doi.org/10.1016/j.snb.2010.06.060

Cited by

  1. NO2 sensing studies of bio-green synthesized Au-doped SnO2 vol.28, pp.17, 2017, https://doi.org/10.1007/s10854-017-7156-3
  2. for efficient detection of CO gas vol.29, pp.6, 2018, https://doi.org/10.1088/1361-6528/aa9bc0
  3. Significant Enhancement of Hydrogen-Sensing Properties of ZnO Nanofibers through NiO Loading vol.8, pp.11, 2018, https://doi.org/10.3390/nano8110902