DOI QR코드

DOI QR Code

Biological activities in Aronia melanocarpa depending on drying methods

건조방법에 따른 아로니아의 생리활성

  • Lee, Seul (Department of Food Science & Biotechnology, Kyungpook National University) ;
  • Moon, Hey-Kyung (Center for Scientific Instruments, Kyungpook National University) ;
  • Lee, Su-Won (Department of Food and Food-Service Industry, Kyungpook National University) ;
  • Moon, Jae-Nam (Department of Food Science & Biotechnology, Kyungpook National University) ;
  • Kim, Jong-Kuk (Department of Food and Food-Service Industry, Kyungpook National University)
  • 이슬 (경북대학교 식품공학부) ;
  • 문혜경 (경북대학교 공동실험실습관) ;
  • 이수원 (경북대학교 식품외식산업학과) ;
  • 문재남 (경북대학교 식품공학부) ;
  • 김종국 (경북대학교 식품외식산업학과)
  • Received : 2016.10.04
  • Accepted : 2016.10.13
  • Published : 2016.12.30

Abstract

To investigate biological activities in Aronia melanocarpa various drying methods were employed such as vacuum freeze drying, hot air drying and cold air drying. DPPH radical scavenging activity and ABTS radical scavenging activity of vacuum freeze dried Aronia melanocarpa was higher than hot and cold air dried Aronia melanocarpa. Vacuum freeze drying method showed the greatest contents of total phenol (15.34 g GAE/100 g), flavonoid (3.10 g GE/100 g) and tannin (2.46 g TE/100 g). Total anthocyanin content decreased to 163.52 mg C3G/100 g and 50.15 mg C3G/100 g for hot and cold air drying, respectively. Vacuum freeze-dried method increased the total anthocyanin content (743.09 mg C3G/100 g) when compared with fresh Aronia melanocarpa (163.52 mg C3G/100 g). Total proanthocyanidin content of vacuum freeze dried Aronia melanocarpa has increased to 6.21 g CE/100 g more than eight times compared with fresh Aronia melanocarpa (0.71 g CE/100 g). Chlorogenic acid and neochlorogenic acid content of vacuum freeze dried Aronia melanocarpa were higher than hot air dried and cold air dried Aronia melanocarpa, increasing about three times compared with fresh Aronia melanocarpa. These results suggested that vacuum freeze drying is optimal drying method to enhance biological activities in Aronia melanocarpa.

건조방법에 따른 아로니아의 생리활성 물질을 비교하기 위해, 진공동결건조, 열풍건조 및 냉풍건조를 실시하였다. 건조방법에 따른 아로니아의 생리활성 측정결과, DPPH radical scavenging activity $IC_{50}$와 ABTS radical scavenging activity $IC_{50}$은 각각 진공동결건조에서 0.72 mg/mL, 0.38 mg/mL로 열풍건조 및 냉풍건조와 비교하였을 때 가장 높은 항산화력을 나타내었다. 총페놀, 총 플라보노이드 및 총 탄닌 함량은 진공동결건조에서 각각 6.19 g GAE/100 g, 3.10 g QE/100 g, 2.46 g TE/100 g으로 열풍건조와 냉풍건조보다 높은 함량을 함유하고 있는 것으로 나타났다. 총 안토시아닌 함량은 열풍건조 및 냉풍건조 시 생과에 비해 줄어들었지만 진공동결건조에서는 약 4.5배 증가하였다. 총 프로안토시아니딘 함량은 진공동결건조 6.21 g CE/100 g>열풍건조 3.18 g CE/100 g>냉풍건조 2.60 g CE/100 g>생과 0.71 g CE/100 g 순으로 나타났다. Chlorogenic acid 함량 및 neochlorogenic aicd 함량은 진공동결건조에서 각각 180.08 mg/100 g, 125.09 mg/100 g으로 가장 높게 나타났다. 위의 실험결과, 진공동결건조가 아로니아의 생리활성을 강화시키는데 가장 적합한 방법일 것으로 생각된다.

Keywords

References

  1. Chrubasik C, Li G, Chrubasik S (2010) The clinical effectiveness of chokeberry: a systematic review. PTR, 24, 1107-1114
  2. Kokotkiewicz A, Jaremicz Z, Luczkiewicz M (2010) Aronia plants: a review of traditional use, biological activities, and perspectives for modern medicine. J Med Food, 13, 255-269 https://doi.org/10.1089/jmf.2009.0062
  3. Benvenuti S, Pellati F, Melegari M, Bertelli D (2004) Polyphenols, anthocyanins, ascorbic acid, and radical scavenging activity of Rubus, Ribes, and Aronia. J Food Sci, 69, 164-169
  4. Kulling SE, Rawel HM (2008) Chokeberry (Aronia melanocarpa)-A review on the characteristic components and potential health effects. Planta Med, 74, 1625-1634 https://doi.org/10.1055/s-0028-1088306
  5. Skupien K, Oszmianski J (2007) The effect of mineral fertilization on nutritive value and biological activity of chokeberry fruit. Agric Food Sci, 16, 46-55 https://doi.org/10.2137/145960607781635822
  6. Oszmianski J, Wojdylo A (2005) Aronia melanocarpa phenolics and their antioxidant activity. Eur Food Res Technol, 221, 809-813 https://doi.org/10.1007/s00217-005-0002-5
  7. Kahkonen MP, Hopia AI, Heinonen M (2001) Berry phenolics and their antioxidant activity. J Agric Food Chem, 49, 4076-4082 https://doi.org/10.1021/jf010152t
  8. Bridle P, Timberlake CF (1997) Anthocyanins as natural food colours-selected aspects. Food Chem, 58, 103-109 https://doi.org/10.1016/S0308-8146(96)00222-1
  9. Mladin P, Mladin G, Oprea E, Rǎdulescu M, Nicola C (2011) Variability of the anthocyanins and tannins in berries of some Lonicera caerulea var. kamchatica, Aronia melanocarpa and Berberis thunbergii var. atropurpurea genotypes. Scientific Papers RIFG, 27, 38-42
  10. Zheng W, Wang SY (2003) Oxygen radical absorbing capacity of phenolics in blueberries, cranberries, chokeberries, and lingonberries. J Agric Food Chem, 51, 502-509 https://doi.org/10.1021/jf020728u
  11. Gasiorowski K, Szyba K, Brokos B, Kolaczynska B, Jankowiak-Wlodarczyk M, Oszmianski J (1997) Antimutagenic activity of anthocyanins isolated from Aronia melanocarpa fruits. Cancer Lett, 119, 37-46 https://doi.org/10.1016/S0304-3835(97)00248-6
  12. Hellstrom JK, Shikov AN, Makarova MN, Pihlanto AM, Pozharitskaya ON, Ryhanen EL, Kivijarvi P, Makarov VG, Mattila PH (2010) Blood pressure-lowering properties of chokeberry (Aronia mitchurinii, var Viking). J Funct Foods, 2, 163-169 https://doi.org/10.1016/j.jff.2010.04.004
  13. Bermudez-Soto MJ, Larrosa M, Garcia-Cantalejo J, Espin JC, Tomas-Barberan FA, Garcia-Conesa MT (2007) Transcriptional changes in human Caco-2 colon cancer cells following exposure to a recurrent non-toxic dose of polyphenol-rich chokeberry juice. Genes Nutr, 2, 111-113 https://doi.org/10.1007/s12263-007-0026-5
  14. Tsami E, Krokida MK, Drouzas AE (1998) Effect of drying method on the sorption characteristics of model fruit powders. J Food Eng, 38, 381-392 https://doi.org/10.1016/S0260-8774(98)00130-7
  15. Yoon KS, Choi YH (1998) The quality characteristics of dried kiwifruit using different drying methods. Food Eng Prog, 2, 49-54
  16. Lee TH, Kum JS, Park ST, Hong SK, Choi HW, Lee JH (2009) Persimmon drying by the mixed desiccant cooling dryer. The Society of Air-Conditioning and Refrigerating Winter Workshop Presentation File, 586-591
  17. Horszwald A, Julien H, Andlauer W (2013) Characterisation of Aronia powders obtained by different drying processes. Food Chem, 141, 2858-2863 https://doi.org/10.1016/j.foodchem.2013.05.103
  18. Barbosa-Canovas GV, Vega-Mercado H (1996) Dehydration of foods. Chapman & Hall, New York, USA
  19. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  20. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food compost Anal, 19, 669-675 https://doi.org/10.1016/j.jfca.2006.01.003
  21. Gutfinger T (1981) Polyphenols in olive oils. J Am Oil Chem Soc, 58, 966-968 https://doi.org/10.1007/BF02659771
  22. The Korean Society of Food Science and Nutrition (2000) Handbook of Experiments in Food Science and Nutrition-Food Science. Hyoilbooks, Seoul, Korea
  23. Paaver U, Matto V, Raal A (2010) Total tannin content in distinct Quercus robur L. galls. J Med Plants Res, 4, 702-705
  24. Lee JM, Durst RW, Wrolstad RE (2005) Determination of total monomeric anthocyanin pigment content of fruit juices, beverages, natural colorants, and wines by the pH differential method: Collaborative study. J AOAC Int, 88, 1269-1278
  25. Hagerman AE (2002) Tannin Handbook. Miami University, Oxford, USA
  26. Sun BS, Ricardo-da-Silva JM, Spranger I (1998) Critical factors of vanillin assay for catechins and proanthocyanidins. J Agric Food Chem, 46, 4267-4274 https://doi.org/10.1021/jf980366j
  27. Zhimin Xu (2012) Analysis of Antioxidant-Rich Phytochemicals. Wiley-Blackwell, USA
  28. Orak HH, Aktas T, Yagar H, İsbilir SS, Ekinci N, Sahin FH (2012) Effects of hot air and freeze drying methods on antioxidant activity, colour and some nutritional characteristics of strawberry tree (Arbutus unedo L) fruit. Food sci Technol Int, 18, 391-402 https://doi.org/10.1177/1082013211428213
  29. Hwang ES, Nhuan DT (2014) Antioxidant contents and antioxidant activities of hot-water extracts of aronia (Aronia melancocarpa) with different drying methods. Korean J Food Sci Technol, 46, 303-308 https://doi.org/10.9721/KJFST.2014.46.3.303
  30. Chung HJ (2014) Comparison of total polyphenols, total flavonoids, and biological activities of black chokeberry and blueberry cultivated in Korea. J Korean Soc Food Sci Nutr, 43, 1349-1356 https://doi.org/10.3746/jkfn.2014.43.9.1349
  31. Wangensteen H, Braunlich M, Nikolic V, Malterud KE, Slimestad R, Barsett H (2014) Anthocyanins, proanthocyanidins and total phenolics in four cultivars of aronia: Antioxidant and enzyme inhibitory effects. J Funct Foods, 7, 746-752 https://doi.org/10.1016/j.jff.2014.02.006
  32. Shahidi F, Naczk M (1995) Food phenolics. Technomic Publishing Company, Inc, Lancaster, USA, p 1-331
  33. Ioannou I, Ghoul M (2012) Advances in applied biotechnology, In Tech, Marian Petre, Rijeka, Croatia, p 101-126
  34. Hwang SJ, Yoon WB, Lee OH, Cha SJ, Kim JD (2014) Radical-scavenging-linked antioxidant activities of extracts from black chokeberry and blueberry cultivated in Korea. Food Chem, 146, 71-77 https://doi.org/10.1016/j.foodchem.2013.09.035
  35. Kim NM, Kim DH (2000) Quality change of cinnamon extract prepared with various drying methods. Korean J Food Nutr, 13, 152-157
  36. Hwang ES, Ki KN (2013) Stability of the anthocyanin pigment extracted from Aronia (Aronia melancocarpa). Korean J Food Sci Technol, 45, 416-421 https://doi.org/10.9721/KJFST.2013.45.4.416
  37. GAF Hendry, JD Houghton (1996) Natural Food Colorants 2nd ed, Blackie Academic & Professional, Glasgow, UK, p 112-130
  38. Esatbeyoglu T, Winterhalter P (2008) Research project dietary procyanidins from a better understanding of human health effects to functionalised foods. Isolation, characterisation and analysis of procyanidins Internal Report
  39. Wu XL, Gu LW, Prior RL, McKay S (2004) Characterization of anthocyanins and proanthocyanidins in some cultivars of Ribes, Aronia, and Sambucus and their antioxidant capacity. J Agric Food Chem, 52, 7846-7856 https://doi.org/10.1021/jf0486850
  40. Wout B, John R, Marie B (2003) Lignin biosynthesis. Annu Rev Plant Biol, 54, 519-546 https://doi.org/10.1146/annurev.arplant.54.031902.134938
  41. Frank J, Kamal-Eldin A, Razden A, Lundh T, Bessby B (2003) The dietary hydroxycinnamate caffeic acid and its conjugate chlorogenic acid increase vitamin E and cholesterol concentrations in Sprague-Dawley rats. J Agric Food Chem, 51, 2526-2531 https://doi.org/10.1021/jf026127k
  42. Johnston KL, Clifford MN, Morgan LM (2003) Coffee acutely modifies gastrointestinal hormone secretion and glucose tolerance in humans: glycemic effects of chlorogenic acid and caffeine. Am J Clin Nutr, 78, 728-733 https://doi.org/10.1093/ajcn/78.4.728
  43. Slimestad R, Torskangerpoll K, HS Nateland, T Johannessen, NH Giske (2005) Flavonoids from black chokeberries, Aronia melanocarpa. J Food Compost Anal, 18, 61-68 https://doi.org/10.1016/j.jfca.2003.12.003
  44. Rop O, Mlcek J, Jurikova T, Valsikova M, Sochor J, Reznicek V, Kramarova D (2010) Phenolic content, antioxidant capacity, radical oxygen species scavenging and lipid peroxidation inhibiting activities of extracts of five black chokeberry (Aronia melanocarpa (Michx.) Elliot) cultivars. J Med Plants Res, 4, 2431-2437
  45. Ochmian I, Grajkowski J, Smolik M (2012) Comparison of some morphological features, quality and chemical content of four cultivars of chokeberry fruits (Aronia melanocarpa). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 40, 253-260 https://doi.org/10.15835/nbha4017181
  46. Noratto G, Porter W, Byrne D, Cisneros-Zevallos L (2009) Identifying peach and plum polyphenols with chemopreventive potential against estrogen-independent breast cancer cells. J Agric Food Chem, 57, 5219-5226 https://doi.org/10.1021/jf900259m
  47. Stacewicz-Sapuntzakis M, Bowen PE, Hussain EA, Damayanti-Wood BI, Farnsworth NR (2001) Chemical composition and potential health effects of prunes: a functional food?. Crit Rev Food Sci Nutr, 41, 251-286 https://doi.org/10.1080/20014091091814

Cited by

  1. 동결분쇄에 따른 아로니아, 자몽, 서리태, 발아현미의 이화학적 특성 vol.45, pp.4, 2016, https://doi.org/10.4014/mbl.1712.12014
  2. 아로니아 비가식 부위로부터 기능성 바이오융복합 소재 개발을 위한 폴리페놀의 추출 공정 최적화 vol.11, pp.2, 2016, https://doi.org/10.15207/jkcs.2020.11.2.085
  3. Study on the Quality Characteristics of Aronia Cheong Prepared with Different Sugars vol.31, pp.4, 2016, https://doi.org/10.17495/easdl.2021.8.31.4.226