참고문헌
- Ahmed, S., Riaz, S., and Jamil, A. 2009. Molecular cloning of fungal xylanases: An overview. Appl. Microbiol. Biotechnol. 84, 19-35. https://doi.org/10.1007/s00253-009-2079-4
-
Andrews, S.R., Taylor, E.J., Pell, G., Vincent, F., Ducros, V.M.A., Davies, G.J., Lakey, J.H., and Gilbert, H.J. 2004. The use of forced protein evolution to investigate and improve stability of family 10 xylanases: The production of
$Ca^{2+}$ -independent stable xylanases. J. Biol. Chem. 279, 54369-54379. https://doi.org/10.1074/jbc.M409044200 - Blanco, A., Diaz, P., Martinez, J., Lbpez, O., Soler, C., and Pastor, F.I.J. 1996. Cloning of a Bacillus sp. BP-23 gene encoding a xylanase with high activity against aryl xylosides. FEMS Microbiol. Lett. 137, 285-290. https://doi.org/10.1111/j.1574-6968.1996.tb08120.x
- Chaikumpollert, O., Methacanon, P., and Suchiva, K. 2004. Structural elucidation of hemicelluloses from Vetiver grass. Carbohydr. Polym. 57, 191-196. https://doi.org/10.1016/j.carbpol.2004.04.011
- Collins, T., Gerday, C., and Feller, G. 2005. Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3-23. https://doi.org/10.1016/j.femsre.2004.06.005
- Do, T.T., Quyen, D.T., Nguyen, T.N., and Nguyen, V.T. 2013. Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger. Protein Expr. Purif. 92, 196-202. https://doi.org/10.1016/j.pep.2013.09.011
- Falck, P., Precha-Atsawanan, S., Grey, C., Immerzeel, P., Staislbrand, H., Adlercreutz, P., and Karlsson, E.N. 2013. Xylooligosaccharides from hardwood and cereal xylans produced by a thermostable xylanase as carbon sources for Lactobacillus brevis and Bifidobacterium adolescentis. J. Agric. Food Chem. 61, 7333-7340. https://doi.org/10.1021/jf401249g
- Fujimoto, Z., Kaneko, S., Kuno, A., Kobayashi, H., Kusakabe, I., and Mizuno, H. 2004. Crystal structures of decorated xylooligosaccharides bound to a family 10 xylanase from Streptomyces olivaceoviridis E-86. J. Biol. Chem. 279, 9606-9614. https://doi.org/10.1074/jbc.M312293200
- Fukuda, M., Watanabe, S., Yoshida, S., Itoh, H., Itoh, Y., Kamio, Y., and Kaneko, J. 2010. Cell surface xylanases of the glycoside hydrolase family 10 are essential for xylan utilization by Paenibacillus sp. W-61 as generators of xylo-oligosaccharide inducers for the xylanase genes. J. Bacteriol. 192, 2210-2219. https://doi.org/10.1128/JB.01406-09
- Fukumura, M., Sakka, K., Shimada, K., and Ohmiya, K. 1995. Nucleotide sequence of the Clostridium stercorarium xynB gene encoding an extremely thermostable xylanase, and characterization of the translated product. Biosci. Biotechnol. Biochem. 59, 40-46. https://doi.org/10.1271/bbb.59.40
- Gallardo, O., Diaz, P., and Pastor, F.I.J. 2003. Characterization of a Paenibacillus cell-associated xylanase with high activity on aryl-xylosides: a new subclass of family 10 xylanases. Appl. Microbiol. Biotechnol. 61, 226-233. https://doi.org/10.1007/s00253-003-1239-1
- Gallardo, O., Pastor, F.I.J., Polaina, J., Diaz, P., Lysek, R., Vogel, P., Isorna, P., Gonzalez, B., and Sanz-Aparicio, J. 2010. Structural insights into the specificity of Xyn10B from Paenibacillus barcinonensis and its improved stability by forced protein evolution. J. Biol. Chem. 285, 2721-2733. https://doi.org/10.1074/jbc.M109.064394
- Harada, K.M., Tanaka, K., Fukuda, Y., Hashimoto, W., and Murata, K. 2008. Paenibacillus sp. strain HC1 xylanases responsible for degradation of rice bran hemicellulose. Microbiol. Res. 163, 293-298. https://doi.org/10.1016/j.micres.2006.05.011
- Ihsanawati, Kumasaka, T., Kaneko, T., Morokuma, C., Yatsunami, R., Sato, T., Nakamura, S., and Tanaka, N. 2005. Structural basis of the substrate subsite and the highly thermal stability of xylanase 10B from Thermotoga maritima MSB8. Proteins Struct. Funct. Genet. 61, 999-1009. https://doi.org/10.1002/prot.20700
- Juturu, V. and Wu, J.C. 2012. Microbial xylanases: engineering, production and industrial applications. Biotechnol. Adv. 30, 1219-1227. https://doi.org/10.1016/j.biotechadv.2011.11.006
- Kang, H.J., Jeong, C.K., Jang, M.U., Choi, S.H., Kim, M.H., Ahn, J.B., Lee, S.H., Jo, S.J., and Kim, T.J. 2009. Expression of cyclomaltodextrinase gene from Bacillus halodurans C-125 and characterization of its multisubstrate specificity. Food Sci. Biotechnol. 18, 776-781.
- Miller, G.L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
- Moon, J.S., Shin, S.Y., Choi, H.S., Joo, W., Cho, S.K., Li, L., Kang, J.H., Kim, T.J., and Han, N.S. 2015. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohydr. Polym. 131, 50-56. https://doi.org/10.1016/j.carbpol.2015.05.022
- Saha, B.C. 2003. Hemicellulose bioconversion. J. Ind. Microbiol. Biotechnol. 30, 279-291. https://doi.org/10.1007/s10295-003-0049-x
- St. John, F.J., Rice, J.D., Preston, J.F., and John, F.J.S. 2006a. Paenibacillus sp. strain JDR-2 and XynA1: a novel system for methylglucuronoxylan utilization. Appl. Environ. Microbiol. 72, 1496-1506. https://doi.org/10.1128/AEM.72.2.1496-1506.2006
- St. John, F.J., Rice, J.D., and Preston, J.F. 2006b. Characterization of XynC from Bacillus subtilis subsp. subtilis strain 168 and analysis of its role in depolymerization of glucuronoxylan. J. Bacteriol. 188, 8617-8626. https://doi.org/10.1128/JB.01283-06
- Sunna, A. and Antranikian, G. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17, 39-67. https://doi.org/10.3109/07388559709146606
-
Teleman, A., Lundqvist, J., Tjerneld, F., Stalbrand, H., and Dahlman, O. 2000. Characterization of acetylated 4-O-methylglucuronoxylan isolated from aspen employing
$^1$ H and$^{13}$ C NMR spectroscopy. Carbohydr. Res. 329, 807-815. https://doi.org/10.1016/S0008-6215(00)00249-4 - Uday, U.S.P., Choudhury, P., Bandyopadhyay, T.K., and Bhunia, B. 2016. Classification, mode of action and production strategy of xylanase and its application for biofuel production from water hyacinth. Int. J. Biol. Macromol. 82, 1041-1054. https://doi.org/10.1016/j.ijbiomac.2015.10.086
- Valenzuela, S.V., Diaz, P., and Pastor, F.I.J. 2010. Recombinant expression of an alkali stable GH10 xylanase from Paenibacillus barcinonensis. J. Agric. Food Chem. 58, 4814-4818. https://doi.org/10.1021/jf9045792
- Valenzuela, S.V., Diaz, P., and Pastor, F.I.J. 2012. Modular glucuronoxylan-specific xylanase with a family CBM35 carbohydratebinding module. Appl. Environ. Microbiol. 78, 3923-3931. https://doi.org/10.1128/AEM.07932-11
- Vrsanska, M., Kolenova, K., Puchart, V., and Biely, P. 2007. Mode of action of glycoside hydrolase family 5 glucuronoxylan xylanohydrolase from Erwinia chrysanthemi. FEBS J. 274, 1666-1677. https://doi.org/10.1111/j.1742-4658.2007.05710.x
-
Waeonukul, R., Pason, P., Kyu, K.L., Sakka, K., Kosugi, A., and Mori, Y. 2009. Cloning, sequencing, and expression of the gene encoding a multidomain endo-
${\beta}$ -1,4-xylanase from Paenibacillus curdlanolyticus B-6, and characterization of the recombinant enzyme. J. Microbiol. Biotechnol. 19, 277-285. -
Wang, W., Yan, R., Nocek, B.P., Voung, T.V., Leo, R. Di, Xu, X., Cui, H., Gatenholm, P., Toriz, G., Tenkanen, M., Savchenko, A., and Master, E.R. 2016. Biochemical and structural characterization of a five-domain GH115
${\alpha}$ -glucuronidase from the marine bacterium Saccharophagus degradans 2-40T. J. Biol. Chem. 291, 14120-14133. https://doi.org/10.1074/jbc.M115.702944
피인용 문헌
- Paenibacillus woosongensis로부터 대장균에 Xylanase 10A의 유전자 클로닝과 정제 및 특성분석 vol.48, pp.2, 2020, https://doi.org/10.4014/mbl.2002.02013