DOI QR코드

DOI QR Code

Arrangement of Disposal Holes According to the Features of Groundwater Flow

지하수 유동 특성을 이용한 심층처분의 처분공 배치 방안

  • Received : 2016.06.21
  • Accepted : 2016.10.25
  • Published : 2016.12.31

Abstract

Based on the results of groundwater flow system modeling for a hypothetical deep geological repository site, quantitative and spatial distributions of groundwater flow rates at the positions of deposition holes, groundwater travel length and time from the positions to the surface environment were analyzed and used to suggest a method for determining locations of deposition holes. The hydraulic head values at the depth of the deposition holes and a particle tracking method were used to calculate the ground-water flow rates and groundwater travel length and time, respectively. From the results, an approach to designing a layout of deposition holes was suggested by selecting relatively favorable positions for maintaining performance of the disposal facility and screening some positions of deposition holes that did not comply with specific constraints for the groundwater flow rates, travel length and time. In addition, a method for determining a geometrical direction for extension of the disposal facility was discussed. Designing the layout of deposition holes with the information of groundwater flow at the disposal depth can contribute to secure performance and safety of the disposal facility.

가상의 심층처분 부지의 지하수 유동 모의 결과를 통해 처분 심도에 위치하는 처분공 지점에서의 지하수 유동량 및 해당 지점에서 지표 환경까지 지하수가 유동하는 경로의 거리와 경로를 통과하는데 걸리는 시간에 대한 수량적, 공간적 분포를 분석하여 그 결과를 처분공의 위치 결정에 이용할 수 있는 방안을 제시하였다. 지하수 유동량은 처분공 위치에서 계산된 지하수위를, 유동 거리와 경과 시간은 입자 추적 기법(particle tracking)을 이용하여 계산하였다. 지하수 유동량 및 유동 거리와 경과 시간의 공간적 분포를 이용하여 처분시설의 성능을 유지하는데 상대적으로 유리한 위치를 선별하고 특정한 제한 조건이 주어진 경우 제외되어야 하는 처분공 위치를 결정하여 처분공 배치에 이용할 수 있은 방안을 제시하였다. 또한 세 가지 정보를 함께 고려하여, 추가적인 처분공의 위치를 선정할 필요가 있을 경우 보다 유리한 확장 방향을 제시할 수 있는 방안도 논의되었다. 처분 심도에서의 지하수 유동 정보를 활용하여 처분공의 배치 방안을 결정하는 것은 처분시설의 성능 및 안전성 확보를 위해 기여할 수 있을 것으로 생각된다.

Keywords

References

  1. International Atomic Energy Agency, Geological Disposal Facilities for Radioactive Waste - Specific Safety Guide, IAEA Safety Standards Series No. SSG-14, IAEA (2011).
  2. Korea Atomic Energy Research Institute (KAERI), "Geological Disposal of Pyroprocessed Waste from PWR Spent Nuclear Fuel in Korea", KAERI/TR-4525/2011, KAERI (2011).
  3. H.J. Choi, J.Y. Lee, and J. Choi, "Development of Geological Disposal Systems for Spent Fuels and High-level Radioactive Wastes in Korea", Nuclear Engineering and Technology, 45(1), 29-40 (2013). https://doi.org/10.5516/NET.06.2012.006
  4. International Atomic Energy Agency, Disposal of Radioactive Waste - Specific Safety Requirements, IAEA Safety Standards Series No. SSR-5, IAEA (2011).
  5. Posiva, Olkiluoto Site Description 2011, POSIVA 2011-02, Posiva Oy (2012).
  6. L. Borgesson and J. Hernelind, Consequences of loss or missing bentonite in a deposition hole - A theoretical study, SKB TR-06-13, SKB (2006).
  7. Posiva, Safety Case for the Disposal of Spent Nuclear Fuel at Olkiluoto - Performance Assessment 2012, POSIVA 2012-04, Posiva Oy (2013).
  8. K.W. Park, K.S. Kim, Y.K. Koh, and J.W. Choi, "Synthetic Study on the Geological and Hydrogeological Model around KURT", J. of the Korean Radioactive Waste Society, 9(1), 13-21 (2011). https://doi.org/10.7733/jkrws.2011.9.1.13
  9. N.Y. Ko, K.W. Park, K.S. Kim, and J.W. Choi, "Groundwater Flow Modeling in the KURT site for a Case Study about a Hypothetical Geological Disposal Facility of Radioactive Wastes", J. of the Korean Radioactive Waste Society, 10(3), 143-149 (2012). https://doi.org/10.7733/jkrws.2012.10.3.143
  10. R.A. Freeze and J.A. Cherry, Groundwater, Prentice-Hall, Inc., New Jersey (1979).
  11. S.H. Ji and Y.K. Koh, "Appropriate domain size for groundwater flow modeling with a discrete fracture network model", Groundwater doi:10.1111/gwat.12435 (2016) (accepted).
  12. D.W. Pollock, "Semianalytical computation of path lines for finite-difference models", Ground Water, 26(6), 743-750 (1988). https://doi.org/10.1111/j.1745-6584.1988.tb00425.x
  13. C. Zheng and G.D. Bennett, Applied Contaminant Transport Modeling, 2nd ed., 621, John Wiley and Sons, Inc., New York (2002).