DOI QR코드

DOI QR Code

Host Dependent Oviposition and Development of Azuki Bean Weevil (Callosobruchus chinensis L.) in Different Leguminous Seeds

기주에 따른 팥바구미(Callosobruchus chinensis L.)의 산란 선호성 및 성장

  • Kim, Seul Gi (Department of Biology, Changwon National University) ;
  • Lee, Su Mi (Department of Biology, Changwon National University) ;
  • Park, Jun Hong (Department of Biology, Changwon National University) ;
  • Song, Kuk (Honam Climate Change Experience Center) ;
  • Shin, Byung Sik (Department of Biology, Changwon National University)
  • 김슬기 (국립 창원대학교 생물학과) ;
  • 이수미 (국립 창원대학교 생물학과) ;
  • 박준홍 (국립 창원대학교 생물학과) ;
  • 송국 (호남기후변화체험관) ;
  • 신병식 (국립 창원대학교 생물학과)
  • Received : 2016.11.30
  • Accepted : 2016.12.22
  • Published : 2016.12.31

Abstract

To investigate the oviposition preference and development of azuki bean weevil (Callosobruchus chinensis L.), the following six different leguminous seeds were used in this study: red bean (Vigna angularis (Willd.) Ohwi & Ohashi), black soybean (Glycine max (L.) Merr.), soybean (Glycine max (L.) Merr.), seoritae (Glycine max (L.) Merr.), small black bean (Rhynchosia nulubilis) and kidney bean (Phaseolus vulgaris var. humilis Alef.). In the study of oviposition preference, the numbers of eggs per leguminous seed on red bean, black soybean, soybean, seoritae and small black bean were 1.23, 0.61, 0.69, 1.05 and 1.13, respectively. The maximum daily number of eggs was observed at 48 hours and the minimum was at 96 hours. According to each host leguminous seed, developmental time for each host seed was different. The shortest adult emergence time was on red bean (25.27 days). The other five leguminous seeds increased or doubled the adult emergence time. Adult emergence rates feeding on red bean, seoritae, black soybean, soybean, small black bean were 83.33%, 28.23%, 27.87%, 20.44%, and 11.59%, respectively. Emergence rate on red bean was four times higher than the rate on other seeds. The longevity of emerged female adults was almost all longer than that of males. The male adults weighed the lowest of feeding on small black bean. Female adults weighed the lowest of feeding on soybean. Adult weights were the heaviest for both males and females feeding on red bean. As a result, hosts of azuki bean weevil could decrease oviposition rate, emergence rate, adult longevity, and adult weight but increase emergence time. Especially in kidney bean, adult was not completely emerged. No eggs were laid. These results suggest that there might be emergence inhibitors in kidney bean. These imformation might be used to control damages caused by azuki bean weevils.

팥바구미(Callosobruchus chinensis L.)의 산란 선호성 및 성장 조사를 위해 6가지 콩과식물 종자인 팥, 흑태, 백태, 서리태, 서목태, 강낭콩을 선택, 실험을 하였다. 각 종자당 산란수는 팥 1.23개, 서목태 1.13개, 서리태 1.05개, 백태 0.69개, 흑태 0.61개로 나타났으며, 둘째 날(48 h) 최고 산란수, 넷째날(96 h) 최저 산란을 나타냈다. 유충 성장기간이 기주식물에 따라 2배 이상 증가하는 것으로 나타났다. 우화율은 팥, 서리태, 흑태, 백태, 서목태(83.33%, 28.23%, 27.87%, 20.44%, 11.59%) 순으로 나타났으며, 모든 종자에서 팥과 3배 이상의 차이를 보였다. 성충 수명은 암컷보다 수컷이 대부분 길었고 암컷의 경우 팥 9.43일, 서리태 8.86일, 흑태 7.88일, 백태 7.17일, 서목태 6.80일로 나타났다. 각 성충의 무게는 암수 모두 팥에서 가장 무겁고, 수컷은 서목태, 암컷은 백태에서 최소 무게를 나타냈다. 결과적으로, 팥바구미는 팥 이외의 기주에서는 산란, 우화율, 성충 수명, 성충 무게 감소가 나타났고 반면 우화시기도 지연되었다. 한편 강낭콩에서 산란과 우화는 전혀 없었는데 이것은 강낭콩 종피에 산란과 우화 억제물질이 있음을 시사하며, 이러한 물질의 활용으로 콩바구미과 피해를 조절할 수 있을 것으로 여겨진다.

Keywords

References

  1. Applebaum SW, B Gestetner and Y Birk. 1965. Physiological aspects of host specificity in the Bruchidae-IV. Developmental incompatibility of soybeans for Callosobruchus. J. Insect Physiol. 11:611-616. https://doi.org/10.1016/0022-1910(65)90143-5
  2. Avido Z, MJ Berlinger and SW Applebaum. 1965. Physiological aspects of host specificity in the Bruchidae: III. Effect of curvature and surface area on oviposition of Callosobruchus chinensis L. Anim. Behav. 13:178-180. https://doi.org/10.1016/0003-3472(65)90089-8
  3. Banto SM and FF Sanchez. 1972. The biology and chemical control of Callosobruchus chinensis (Linn.) (Coleoptera: Bruchidae). Philippine Entomologist 2:167-182.
  4. Bellows Jr., TS. 1982. Analytical models for laboratory populations of Callosobruchus chinensis and C. maculatus (Coleoptera: Bruchidae). J. Anim. Ecol. 51:263-287. https://doi.org/10.2307/4324
  5. Bhattacharya B and TC Banerjee. 2001. Factors affecting egglaying behavior and fecundity of Callosobruchus chinensis (L.) (Coleoptera: Bruchidae) infesting stored pulses. Orient. Insects. 35:373-386. https://doi.org/10.1080/00305316.2001.10417313
  6. Bishwo P Mainali, HJ Kim, CG Park, JH Kim, YN Yoon, IS Oh and SD Bae. 2015. Oviposition preference and development of azuki bean weevil, Callosobruchus chinensis, on five different leguminous seeds. Journal of Stored Products Research 61:97-101. https://doi.org/10.1016/j.jspr.2015.01.001
  7. Gbaye OA, JC Millard and GJ Holloway. 2011. Legume type and temperature effects on the toxicity of insecticide to the genus Callosobruchus (Coleoptera: Bruchidae). J. Stored Prod. Res. 47:8-12. https://doi.org/10.1016/j.jspr.2010.08.001
  8. Huesing JE, RE Shade, MJ Chrispeels and LL Murdock. 1991. ${\alpha}$-Amylase inhibitor, not phytohemagglutinin, explains resistance of common bean seeds to cowpea weevil. Plant Physiol. 96:993-996. https://doi.org/10.1104/pp.96.3.993
  9. Huignard J, B Leroi, I Alzouma and JF Germain. 1985. Oviposition and devlopment of Bruchidius atrolineatus and Callosobruchus maculatus in Vigna unguiculata cultures in Niger. Insect Sci. Appl. 6:691-699.
  10. Ishimoto M and K Kitamura. 1988. Identification of the growth inhibitor on azuki bean weevil in kidney bean (Phaseolus vulgaris L.). Jpn. J. Breed. 38:367-370. https://doi.org/10.1270/jsbbs1951.38.367
  11. Ishimoto M and K Kitamura. 1989. Growth inhibitory effects of an ${\alpha}$-amylase inhibitor from the kidney bean (Phaseolus vulgaris L.) on three species of bruchids (Coleoptera: Bruchidae). Appl. Ent. Zool. 24:281-286. https://doi.org/10.1303/aez.24.281
  12. Jackai LEN and RA Daoust. 1986. Insect pests of cowpeas. Ann. Rev. Entomol. 31:95-119. https://doi.org/10.1146/annurev.en.31.010186.000523
  13. Kim KC and HS Choi. 1987. Effects of Temperature on the Oviposition, Feeding and Emergence of the Azuki Bean Weevil (Callosobruchus chinensis L.) in the stored beans. Korean J. Plant Prol. 26:71-81.
  14. Lale NES and S Vidal. 2003. Effect of constant temperature and humidity on oviposition and development of Callosobruchus maculatus (F.) and Callosobruchus subinnotatus (Pic) on bambara groundnut, Vigna subterranea (L.) Verdcourt. J. Stored Prod. Res. 39:459-470. https://doi.org/10.1016/S0022-474X(01)00028-5
  15. Leonardo FR de-sa, TT Wermelinger, S Ribeiro Eda, A Gravina Gde, KV Fernandes, J Xavier-Filho, TM Venancio, GL Rezende and AE Oliveira. 2014. Effects of Phaseolus vulgaris (Fabaceae) seed coat on the embryonic and larval development of the cowpea weevil Callosobruchus maculatus (Coleoptera: Bruchidae). J. Insect Physiol. 60:50-57. https://doi.org/10.1016/j.jinsphys.2013.10.004
  16. Marshall JJ and CM Lauda. 1975. Purification and properties of phaseolamin, an inhibitor of ${\alpha}$-amylase, from the kidney bean, Phaseolus vulgaris. J. Biol. Chem. 250:8030-8037.
  17. Olajire AG, JC Millad and GJ Holloway. 2011. Legume type and temperature effects on the toxicity of insecticide to the genus Callosobruchus (Coleoptera: Bruchidae). J. Stored Prod. Res. 47:8-12. https://doi.org/10.1016/j.jspr.2010.08.001
  18. Papaj DR and RJ Prokopy. 1989. Ecological and evolutionary aspects of learning in phytophagous insects. Ann. Rev. Entomol. 34:315-350. https://doi.org/10.1146/annurev.en.34.010189.001531
  19. Sales MP, LR Gerhardt, MF Grossi-de-sa and J Xavier-Filho. 2000. Do legume storage proteins play a role in defending seeds against brunchids? Plant Physiol. 124:515-522. https://doi.org/10.1104/pp.124.2.515
  20. Seddiqi PM. 1972. Studies on Longevity, oviposition, fecundity and development of Callosobruchus chinensis L. (Coleoptera: Bruchidae). J. Appl. Entomol. 72:66-72.
  21. Singh SR. 1978. Resistance to pests of cowpea in Nigeria. pp. 267-279. In Pests of Grain Legumes: Ecology and Control (Singh SR, HF van Emden and TA Taylor, eds.). Academic Press, London.
  22. Singh SR. 1985. Insects damaging cowpeas in Asia. pp. 245-248. In Cowpea Research, Production and Utilization. (Singh SR and KO Rachie, eds.). John Wiley and Sons, Chichester.
  23. Smith RH. 1986. Oviposition, competition and population dynamics in storage insects. In: Proc. 4th Int. Conf. Stored-product Protection.
  24. Southgate BJ. 1979. Biology of the Bruchidae. Ann. Rev. Entomol. 24:44-473.
  25. Southgate BJ. 1984. Observations on the larval emergence in Callosobruchus chinensis (Coleoptera: Bruchidae). Entomol. Gen. 9:177-180. https://doi.org/10.1127/entom.gen/9/1984/177
  26. Uchoa AF, RA Dmatra, JM Albuquerue-Chunha, SM Sauza and CP Silva. 2006. Presence of the storage seed protein vicilin interal organs of larval Callosobruchus maculatus (Coleoptera: Bruchidae). J. Insect Physiol. 52:169-178. https://doi.org/10.1016/j.jinsphys.2005.10.002