References
- Altiparmak, F., Gen, M., Lin, L., and Paksoy, T. (2006), A genetic algorithm approach for multi-objective optimization of supply chain networks, Computers and Industrial Engineering, 51, 196-215. https://doi.org/10.1016/j.cie.2006.07.011
- Cakravastia, A., Toha, I., and Nakamura, N. (2002), A two-stage model for the design chain networks, International Journal of Production Economics, 80, 231-248. https://doi.org/10.1016/S0925-5273(02)00260-8
- Chen, C., Wang, B., and Lee, W. (2008), Multi-objective optimization for a multi-enterprise supply chain network, Industrial and Engineering Chemistry Research, 42(6/7), 1879-1889.
- Chopra, S. and Meindl, P. (2004), Supply Chain Management: Strategy, Planning and Operation, Prentice Hall, Upper Saddle River, USA.
- Coello, C. A., Lamont G. B., and Van Veldhuizen, D. A. (2007), Evolutionary algorithms for solving multiobjective problems, 2nd ed., Springer, Berlin.
- Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002), A fast and elitist multi objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 182-197. https://doi.org/10.1109/4235.996017
- Elhedhli, S. and Gzara, F. (2008), Integrated design of supply chain networks with three echelons, multiple commodities and technology selection, IIE Transactions, 40(1), 31-44. https://doi.org/10.1080/07408170701246641
- Guille'n, G., Mele, F., Bagajewicz, M., Espuna, A., and Puigjaner, L. (2005), Multi objective supply chain design under uncertainty, Chemical Engineering Science, 60, 1535-1553. https://doi.org/10.1016/j.ces.2004.10.023
- Gumus, A. T., Guneri, A. F., and Keles, S. (2009), Supply chain network design using an integrated neuro- fuzzy and MILP approach: A comparative design study, Expert Systems with Applications, 36, 12570-12577. https://doi.org/10.1016/j.eswa.2009.05.034
- Hajipour, V., Mehdizadeh, E., Tavakkoli-Moghaddam, R. (2013), A novel Pareto-based Multi-objective Vibration Damping Optimization Algorithm to Solve Multi-objective Optimization Problems, Published Online ScientiaIranica, Transaction E, http://www.scientiairanica.com/en/ManuscriptDetail?mid=228.
- MATLAB Version 7.10.0.499 (R2010a) (2010), The Math Works, Inc. Protected by U.S. and international patents.
- Mehdizadeh, E. and Tavakkoli-Moghaddam, R. (2009), Vibration damping optimization algorithm for an identical parallel machine scheduling problem, Conference of Iranian Operations Research Society, Babolsar, Iran.
- Moncayo-Martinez, L. A. and Zhang, D. Z. (2011), Multi-objective ant colony optimisation: A meta-heuristic approach to supply chain design, International Journal of Production Economics, 131, 407-420. https://doi.org/10.1016/j.ijpe.2010.11.026
- Mousavi, S. M., Niaki, S. T. A., Mehdizadeh, E., and Tavarroth, M. R. (2013), The capacitated multi-facility location-allocation problem with probabilistic customer location and demand: two hybrid meta-heuristic algorithms, International Journal of Systems Science, 44(10), 1897-1912. https://doi.org/10.1080/00207721.2012.670301
- Sabri, E. and Beamon, B. (2000), A multi-objective approach to simultaneous strategic and operational planning in supply chain design, The International Journal of Management Science, 28(5), 581-598.
- Santoso, T., Ahmed, S., Goetschalckx, M., and Shapiro, A. (2005), A stochastic programming approach for supply chain network design under uncertainty, European Journal of Operational Research, 167, 96-115. https://doi.org/10.1016/j.ejor.2004.01.046
- Simchi-Levi, D., Kaminsky, P., and Simchi-Levi, E. (2003), Designing and managing the supply chain: concepts, strategies and case studies, 2nd ed. New York, NY: McGraw-Hill.
- Srinivas, N. and Deb, K. (1995), Multi objective function optimization using non dominated sorting genetic algorithms, Evolutionary Computation, 2(3), 221-248. https://doi.org/10.1162/evco.1994.2.3.221
- Syam, S. S. (2002), A model and methodologies for the location problem with logistical components, Computers and Operations Research, 29, 1173-1193. https://doi.org/10.1016/S0305-0548(01)00023-5
- Syarif, A., Yun, Y., and Gen, M. (2002), Study on multi-stage logistics chain network: A spanning tree-based genetic algorithm approach, Computers and Industrial Engineering, 43, 299-314. https://doi.org/10.1016/S0360-8352(02)00076-1
- Jayaraman, V. and Ross, A. (2003), A simulated annealing methodology to distribution network design and management, European Journal of Operational Research, 144, 629-645. https://doi.org/10.1016/S0377-2217(02)00153-4
- Yeh, W. C. (2005), A hybrid heuristic algorithm for multistage supply chain network problem, International Journal of Advance Manufacturing Technology, 26(5/6), 675-685. https://doi.org/10.1007/s00170-003-2025-z
- Yeh, W. C. (2006), A efficient memetic algorithm for multi-stage supply chain network problem, International Journal of Advance Manufacturing Technology, 29(7/8), 803-813. https://doi.org/10.1007/s00170-005-2556-6
- Tsiakis, P., Shah, N., and Pantelides, C. (2001), Design of multi-echelon supply chain networks under demand uncertainty, Industrial and Engineering Chemistry Research, 40(16), 3585-3604. https://doi.org/10.1021/ie0100030
- Zitzler, E. and Thiele, T. (1998), Multi objective Optimization Using Evolutionary Algorithms-A Comparative Case Study, Conference on Parallel Problem Solving from Nature, Amsterdam, 292-301.
Cited by
- A distribution free newsvendor model with consignment policy and retailer’s royalty reduction vol.56, pp.15, 2018, https://doi.org/10.1080/00207543.2017.1399220