DOI QR코드

DOI QR Code

파이로시퀀싱 분석법을 이용한 주거 환경 중 거실과 화장실의 세균 특성

Characteristics of Bacteria in the Living Room and Bathroom of a Residential Environment Using the Pyrosequencing Method

  • 이시원 (국립환경과학원 상하수도연구과) ;
  • 정현미 (국립환경과학원 상하수도연구과) ;
  • 박응로 (국립환경과학원 상하수도연구과)
  • Lee, Siwon (Water Supply & Sewerage Research Division, National Institute of Environmental Research) ;
  • Chung, Hyen-Mi (Water Supply & Sewerage Research Division, National Institute of Environmental Research) ;
  • Park, Eung-Roh (Water Supply & Sewerage Research Division, National Institute of Environmental Research)
  • 투고 : 2015.10.27
  • 심사 : 2016.01.08
  • 발행 : 2016.03.28

초록

본 연구에서는 파이로시퀀싱 분석법을 이용하여 주거 환경 중 거실과 화장실의 세균 다양성을 분석하였다. 주거 환경 중 거실과 화장실에 존재하는 세균의 총 유전자량과 다양성 지수는 차이가 없었으나, 존재하는 세균의 종류에서는 차이가 나타났다. Phylum-level에서는 거실에서 나타나지 않은 Acidobacteria, Chlorobi, Chloroflexi, Fusobacteria, Nitrospirae 및 Planctomycetes문이 화장실 공기중에서 분석되어 상대적으로 넓은 영역의 세균 분포가 추정되었으며, class-level에서는 우점하는 Proteobacteria문 중 ${\beta}$-Proteobacteria와 ${\delta}$-Proteobacteria강이 거실에 비해 화장실에서 높은 비율로 분석되었다. 한편 genus-level에서는 거실이 화장실에 비해 상대적으로 다양한 속이 분석되었으나, 모두 Methylobacterium속이 우점하였으며 두 주거 환경에서 각각 특징적으로 분포하는 미생물이 존재하였다.

In this study, bacterial diversity in the living room and bathroom of a residential environment was analyzed using the pyrosequencing method. There was no difference in the diversity index of bacteria between the 2 rooms; however, differences were noted in the composition of bacteria. The classes ${\beta}$-Proteobacteria and ${\delta}$-Proteobacteria were found in the bathroom at higher abundances than in the living room. The phyla Acidobacteria, Chlorobi, Chloroflexi, Fusobacteria, Nitrospirae, and Planctomycetes were found in the bathroom, but not in the living room, indicating a broader range of bacteria. However, the living room showed a more diverse range of bacterial genera than the bathroom did. In both the living room and the bathroom, the genus Methylobacterium was dominant.

키워드

참고문헌

  1. Chen PS, Li CS. 2008. Concentration profiles of airborne Mycobacterium tuberculosis in a hospital. Aerosol Sci. Technol. 42: 194−200. https://doi.org/10.1080/02786820801922953
  2. Douwes J, Thorne P, Pearce N, Heederik D. 2003. Bioaerosol health effects and exposure assessment: progress and prospects. Ann. Occup. Hyg. 47: 187−200. https://doi.org/10.1093/annhyg/meg032
  3. Fung F, Hughson WG. 2003. Health effects of indoor fungal bioaerosol exposure. Appl. Occup. Environ. Hyg. 18: 535−544. https://doi.org/10.1080/10473220301451
  4. Gravesen S. 2000. Microbiology on indoor air '99--what is new and interesting? An overview of selected papers presented in Edinburgh, August, 1999. Indoor Air 10: 74−80. https://doi.org/10.1034/j.1600-0668.2000.010002074.x
  5. Hua NP, Kobayashi F, Iwasaka Y, Shi GY, Naganuma T. 2007. Detailed identification of desert-originated bacteria carried by Asian dust storms to Japan. Aerobiologia 23: 291−298. https://doi.org/10.1007/s10453-007-9076-9
  6. Kellogg CA, Griffin DW. 2006. Aerobiology and the global transport of desert dust. Trends Ecol. Evol. 21: 638−644. https://doi.org/10.1016/j.tree.2006.07.004
  7. Kelley ST, Gilbert JA. 2013. Studying the microbiology of the indoor environment. Genome Biol. 14: 202−210. https://doi.org/10.1186/gb-2013-14-2-202
  8. Kim DH, Lee SH, Cho JC. 2008. Evaluation of various oligotrophic media for cultivation of previously uncultured soil bacteria. Korean J. Microbiol. 44: 352−357.
  9. Kim JH. 2010. Study on the distribution of bacteria and fungi in indoor air in subway station. Master thesis. Cheonan, Dankook University.
  10. Kim N, Kim YR, Kim MK, Cho DW, Kim J. 2007. Isolation and characterization of airborne bacteria and fungi in indoor environment of elementary schools. Korean J. Microbiol. 43: 193−200.
  11. Kim MW. 2012. Assessment and quality control of indoor microbial parameters. J. Korean Soc. Indoor Environ. 9: 161−171.
  12. Kim SH, Kim YK. 2009. A study on microbial pollution of indoor air at elderly care facilities. J. Acad. Indoor Technol. 10: 2485−2491.
  13. Lee A, Kim N, Kim S, Kim J. 2005. Distribution and characteristics of airborne microorganisms in indoor environment of schools. Korean J. Microbiol. 41: 188−194.
  14. Lee CM, Kim YS, Lee TH, Park WS, Hong SC. 2004. Characterization of airborne bioaerosol concentration in public facilities. J. Environ. Sci. 13: 215−222.
  15. Lee S, Choi B, Yi SM, Ko G. 2009. Characterization of microbial community during Asian dust events in Korea. Sci. Total Environ. 407: 5308−5314. https://doi.org/10.1016/j.scitotenv.2009.06.052
  16. Lee S, Chung HM, Park SJ, Choe B, Kim JH, Lee BR, et al. 2015. Identification and phylogenetic analysis of culturable bacteria in the bioareosol from several environments. Microbiol. Biotechnol. Lett. 43: 142−149. https://doi.org/10.4014/mbl.1503.03008
  17. Lee S, Oh HW, Lee KH, Ahn TY. 2009. Methylobacterium dankookense sp. nov., isolated from drinking water. J. Microbiol. 47: 716−720. https://doi.org/10.1007/s12275-009-0126-6
  18. Moon HJ, An KA, Choi MS. 2012. The status and caused of indoor airborne micro-organisms activities in residential buildings. J. Korean Soc. Living Environ. Sys. 19: 669−675.
  19. National Institute of Environmental Research. 2015. Study on the Microorganisms of Bioaerosol for Surroundiings(II). Research report.
  20. Robbins CA, Swenson LJ, Nealley ML, Gots RE, Kelman BJ. 2000. Health effects of mycotoxins in indoor air. Appl. Occup. Environ. Hyg. 15: 773−784. https://doi.org/10.1080/10473220050129419
  21. Wang X, Hu M, Xia Y, Wen X, Ding K. 2012. Pyrosequencing analysis of bacterial diversity in 14 wastewater treatment systems in China. Appl. Environ. Microbiol. 78: 7042−7047. https://doi.org/10.1128/AEM.01617-12
  22. Weon HY, Kim BY, Joa JH, Son JA, Song MH, Kwon SW, et al. 2008. Methylobacterium iners sp. nov. and Methylobacterium aerolatum sp. nov., isolated from air samples in Korea. Int. J. Syst. Evol. Microbiol. 58: 93−96. https://doi.org/10.1099/ijs.0.65047-0
  23. Yoo J, Jang SK, Seo SY, Youn TI, Kim HD. 2008. A study on error of the impaction method for indoor bioaerosol. Proceeding of the 47th Meeting of Korean Society for Atmospheric Environment.
  24. Zhang T, Shao MF, Lin Y. 2012. 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J. 6: 1137−1147. https://doi.org/10.1038/ismej.2011.188

피인용 문헌

  1. Composition of Groundwater Bacterial Communities before and after Air Surging in a Groundwater Heat Pump System According to a Pyrosequencing Assay vol.9, pp.11, 2016, https://doi.org/10.3390/w9110891