DOI QR코드

DOI QR Code

Thermal Analysis of Ballscrew Systems by Explicit Finite Difference Method

현시적 유한차분법을 이용한 볼나사 시스템의 열해석

  • 민복기 (한양대학교 기계공학부) ;
  • 박천홍 (한국기계연구원 초정밀시스템연구실) ;
  • 정성종 (한양대학교 기계공학부)
  • Received : 2015.08.06
  • Accepted : 2015.12.14
  • Published : 2016.01.01

Abstract

Friction generated from balls and grooves incurs temperature rise in the ballscrew system. Thermal deformation due to the heat degrades positioning accuracy of the feed drive system. To compensate for the thermal error, accurate prediction of the temperature distribution is required first. In this paper, to predict the temperature distribution according to the rotational speed, solid and hollow cylinders are applied for analysis of the ballscrew shaft and nut, respectively. Boundary conditions such as the convective heat transfer coefficient, friction torque, and thermal contact conductance (TCC) between balls and grooves are formulated according to operating and fabrication conditions of the ballscrew. Explicit FDM (finite difference method) is studied for development of a temperature prediction simulator. Its effectiveness is verified through numerical analysis.

볼나사 시스템은 볼과 그루브 사이에서 발생하는 마찰에 의해 온도가 상승하며, 이에 따른 열변형이 이송계의 위치결정 정도를 저하시킨다. 이를 보상하기 위해서는 볼나사 온도분포의 우선적 예측이 필요하다. 본 논문에서는 나사축 회전속도에 따른 온도분포를 해석하기 위해 볼나사 축과 너트를 각각 실린더와 중공 실린더로 가정한다. 경계조건인 대류 열전달계수, 볼과 그루브에서 발생하는 마찰토크와 접촉열전도를 볼나사 운전 및 조립 조건에 대하여 정식화 한다. 그리고, 현시적 유한차분법을 적용한 온도 분포 예측 시뮬레이터를 개발하고 그 유용성을 검증한다.

Keywords

References

  1. KIMM, 2014, Development of Platform Technology for Machine Accuracy Simulation II, Research Report, Korea Institute of Machinery & Materials.
  2. Ahn, J. Y. and Chung, S. C., 2004, "Real-time Estimation of the Temperature Distribution and Expansion of a Ball Screw System using an Observer," Proceedings of the Institution of Mechanical Engineers Part B, Journal of Engineering Manufacture, Vol. 218, pp. 1667-1680. https://doi.org/10.1177/095440540421801203
  3. Obuchi, N., Otsuka, J. and Hoshino T., 1987 "Study on Thermal Expansion of Ball Screw -Calculation of Temperature Distribution by Difference Method-," Journal of the JSPE, Vol. 53, No. 12, pp. 1899-1904.
  4. Chung, S. C. and Park, J. K., 1992, "Thermal Expansion Analysis of the Ball Screw System by Finite Difference Methods," Journal of the KSPE, Vol. 9, No. 4, pp. 44-57.
  5. Min, B. K., Park, C. H. and Chung, S. C., 2011, "Modeling of Ballscrew Nut Stiffness Including Thermal Effect," Proceeding of the ASPE 2011 Annual Meeting, Vol. 52, pp. 319-322.
  6. Kim, M. J., Min, B. K. and Chung, S. C., 2011, "Thermal Analysis of Ballscrew Systems by Finite Difference Methods," Proceeding of the ASPE 2011 Annual Meeting, Vol. 52, pp. 314-317.
  7. Min, B. K., Park, C. H. and Chung, S. C., 2012, "Modeling of Thermal Nut Stiffness in Ballscrews," Proceeding of the ASPE 2012 Annual Meeting, Vol. 54, pp. 390-393.
  8. Nakajima, K., 1995, "Thermal Contact Resistance between Balls and Rings of a Bearing under Axial, Radial, and Combined Loads," Journal of Thermophysics and Heat Transfer, Vol. 9. No. 1, pp. 88-95. https://doi.org/10.2514/3.632
  9. Yovanovich, M. M., 1971, "Thermal Constriction Resistance Between Contacting Metallic Paraboloids: Application to Instrument Bearings," American Institute of Aeronautics and Astronautics, Vol. 24, pp. 337-358.
  10. Madhusudana, C. V., 2014, Thermal contact conductance, Springer, Sydney.
  11. Harris, T. A., 2001, Rolling Bearing Analysis, John Wiley, New York, pp. 189-195.
  12. NSK, 2014, Ballscrew Catalog, NSK Co., LTd.
  13. Chung, S. C., Cao, L., Khim, G. H. and Park, C. H., 2013, "Precision Modeling and Measurement of Nut Stiffness in Ballscrews," Proceeding of the ASPE 2013 Annual Meeting, Vol. 56, pp. 295-298.
  14. Mills, A. F., 1999, Basic Heat & Mass Transfer, Prentice Hall, New York, pp. 330-333.
  15. Oh, K. J., Min, B. K., Park, C. H. and Chung, S. C., 2013, "Identification of Thermal Characteristics in the Ballscrew Assembly," Proceeding of the ASPE 2013 Annual Meeting, Vol. 56, pp. 331-334.
  16. Bossmanns, B. and Tu, J. F., 1999, "A Thermal Model for High Speed Motorized Spindles," International Journal of Machine Tools & Manufacture, Vol. 39, pp. 1345-1366. https://doi.org/10.1016/S0890-6955(99)00005-X