DOI QR코드

DOI QR Code

Structural Design and Evaluation of Six-component Wheel Dynamometer

6축 휠 동력계의 구조설계 및 평가

  • Kim, Man Gee (School of Mechanical Engineering, Chungbuk Nat'l Univ.) ;
  • Joo, Jin Won (School of Mechanical Engineering, Chungbuk Nat'l Univ.)
  • Received : 2015.08.18
  • Accepted : 2015.11.03
  • Published : 2016.01.01

Abstract

Wheel dynamometers are used to measure dynamic load that is conveyed from the road to a vehicle while driving. In this paper, two types of six-component wheel dynamometers utilizing shear deformation and bending deformation were designed and evaluated. Prior to designing the shear and bending type wheel dynamometers, the shear and bending deformation behaviors of the basic structure of the wheel dynamometer itself were analyzed using finite element analysis. Strain analysis was performed repeatedly in order to obtain a similar output sensing strain for each load component. The design was modified with a bridge circuit in order to minimize coupling strain. The results indicated that the shear type dynamometer was expected to obtain stable characteristics due to uniform strain distribution while the bending type dynamometer was expected to obtain high-quality sensitivity performance due to consistent output sensitivity.

자동차 주행 중 도로면으로부터 차량 바퀴에 전달되는 동하중을 측정하기 위해 휠 동력계가 사용된다. 본 논문에서는 전단 변형과 굽힘 변형을 이용한 두 가지 타입의 6축 휠 동력계를 설계하고 비교 평가하였다. 유한요소해석을 이용하여 휠 동력계 기본 구조에 대한 전단 변형 거동과 굽힘 변형 거동을 분석하였으며 이로부터 전단형 휠 동력계와 굽힘형 휠 동력계를 설계하였다. 변형률 해석을 반복 수행하여 각 하중에 대한 출력변형률이 미리 결정된 비슷한 값이 되도록 하고 상호간섭 변형률이 최소화 되도록 설계를 수정하고 브리지 회로를 구성하였다. 전단형 휠 동력계는 균일한 변형률 분포를 얻을 수 있어 제작시 안정된 특성치를 얻을 수 있는 반면에, 굽힘형 휠 동력계는 각 하중에 대한 출력 변형률 값이 더 일정하여 균일한 감도의 좋은 성능을 얻을 수 있을 것으로 예측된다.

Keywords

References

  1. Yoshida, T., 1984, "6-component Force Transducer and its Application," Proc. 10th Conf. IMEKO TC-3 on Measurement of Force and Mass., pp. 11-15.
  2. Ono, K. and Hatamura, Y., 1986, "A new Design for 6-component Force/Torque Sensors," Mechanical Problems in Measuring Force and Mass., pp. 39-48.
  3. Yabuki, A., 1990, "Six-Axis Force/Troque Sensor for Assembly Robots," FUJITSU Sci. Tech. J., Vol. 26, No. 1, pp. 41-47.
  4. Joo, J. W., Na, K. S. and Kim, G. S., 1998, "Design and Evaluation of small size Six-axis Force/Torque Sensor Using Parallel Plate Structure," Trans. Korean Soc. Mech. Eng. A, Vol. 22, No. 2, pp. 352-364.
  5. Bayo, E. and Stubbe, J. R., 1989. "Six-Axis Force Sensor Evaluation and a New Type of Optimal Frame Truss Design for Robotic Applications," J. Robotics Systems, Vol. 6, No. 2, pp. 191-208. https://doi.org/10.1002/rob.4620060206
  6. Kang C. G., 1998, "Analysis on Force Sensing Errors of Force-Torque Sensors," Trans. Korean Soc. Mech. Eng. A, Vol. 22, No. 7, pp. 352-364.
  7. Chao, L. P. and Chen, K-T., 1997, "Shape Optimal Design and Force Sensitivity Evaluation of Six-Axis Force Sensors," Sensors and Actuators A, Vol. 63, pp. 105-112. https://doi.org/10.1016/S0924-4247(97)01534-3
  8. Gang, J. H., Park, Y. M., Won, J. H. and Choi, J. H., 2009, "A study on reliability based design optimization of six-axis wheel force transducer", Proc. of the KSME 2009 Annual Meeting, pp. 96-99.
  9. Park, Y. U. and Joo, J. W., 2015, "Deformation Analysis of a Sensing Part for the Design of Six-component Wheel Dynamometer," J. Indust. Sci. and Tech. Inst., Vol. 29, No. 1, pp. 37-42.