DOI QR코드

DOI QR Code

Optimization of a Cam Profile in a Circuit Breaker to Improve Latching Performance

캠 윤곽 최적설계를 통한 차단기 래칭 성능 향상

  • Received : 2015.08.20
  • Accepted : 2015.11.18
  • Published : 2016.01.01

Abstract

Higher circuit breaker safety standards can be obtained by increasing the sustaining time of the latching section. This time increase is achieved through velocity reduction after contacting when the closing mechanism operates. The potential for the re-closing phenomenon to occur is also reduced by obtaining time to return open latch. In this study, the sustaining time for the latching section was increased through cam profile optimization based on the displacement response of the moving parts. In addition, the existing performance velocity was also satisfied. A multibody dynamics model of the circuit breaker was developed using ADAMS. To validate the model, simulation results were compared to experiment results. Then, cam profile optimization was carried out using an optimal design program PIAnO. Design variables selected included the radial direction of the cam. Design sensitivity analysis was carried out by design section as well. As a result of optimization, the sustaining time for the latching section was increased.

차단기 메커니즘의 안전성은 클로징 메커니즘 작동 시 접점 이후의 속도 감소를 통한 오픈 샤프트가 래치에 걸리는 래칭(latching) 구간에서의 유지 시간 개선을 통해 확보된다. 이는 오픈 래치가 복귀할 시간을 확보하여 재 차단되는 현상을 줄이기 때문이다. 본 연구에서는 캠 윤곽 최적화를 통해 기존의 구동 성능을 만족하고 래칭 구간에 대한 메커니즘의 안전성을 확보하고자 가동부의 변위 응답 중 래칭이 발생하는 구간에서의 유지 시간을 개선하였다. ADAMS 를 이용한 차단기 다물체동역학 모델을 개발하였으며 시험 결과와 비교하여 검증하고 최적설계 프로그램인 PIAnO 를 사용하여 캠 윤곽의 최적설계를 수행하였다. 캠 윤곽의 최적설계는 캠의 반경 방향으로 설계점을 선정하였으며 설계구간별 민감도 분석을 수행하였다. 최적화 결과 래칭 구간에서의 유지 시간을 개선하였다.

Keywords

References

  1. Sohn, J. H., Lee, S. K., Kim, S. O. and Yoo, W. S., 2007, "Study of Spring Modeling Techniques for Kinematic and Dynamic Analysis of a Spring operating Mechanism for the Circuit Breaker," Trans. Korean Soc. Mech. Eng. A, Vol.31, No.7, pp.777-783. https://doi.org/10.3795/KSME-A.2007.31.7.777
  2. Lee, S. K., Kim, S. O., Yoo, W. S. and Sohn, J. H., 2007, "Study on the Spring Modeling of Circuit Breaker with Spring Operating Mechanism," KSME Spring Conference, Vol. 2007, No. 5, pp. 2171-2176.
  3. Choi, G. S., Cha, H. K., Sohn, J. H. and Yoo, W. S., 2014, "Optimum Latch Contour Design for Improving Gas Circuit Breaker Performance," Trans. Korean Soc. Mech. Eng. A, Vol.38, No.1, pp.25-30. https://doi.org/10.3795/KSME-A.2014.38.1.025
  4. Jang, J. S., Yoon, C. G., Ryu, C. Y., Kim, H. W., Bae, B. T. and Yoo, W. S., 2015, "Optimization of the Switch Mechanism in a Circuit Breaker Using MBD Based Simulation," The Scientific World Journal, Vol. 2015.
  5. Kim, J. H., Ahn, K. Y., Kim, S. H. and Lee, D. G. and Kwak, Y. K., 1998, "Design of the Cam Used in Power Circuit Breaker with Non-Constant Angular Velocity" Journal of the Korean Society for Precision Engineering, pp. 692-697.
  6. Kim, J. H., Ahn, K. Y., Kim, S. H. and Kwak, Y. K., 2001, "Optimal Design of a Variable-Speed Cam for Power Circuit Breaker," Journal of the KSPE, Vol. 18, No. 12, pp.47-53.
  7. Yoo, W. S., Kim, S. O. and Sohn, J. H., 2007, "Dynamic Analysis and Design of a High Voltage Circuit Breaker with Spring Operating Mechanism," Journal of Mechanical Science and Technology, Vol.21, No. 12, pp.2101-2107. https://doi.org/10.1007/BF03177469
  8. Jang, J. S., Sohn, J. H. and Yoo, W. S., 2011, "Optimization of the Cam Profile of a Vacuum Circuit Breaker by Using Multi-body Dynamics," Trans. Korean Soc. Mech. Eng. A, Vol.35, No.7, pp.723-728. https://doi.org/10.3795/KSME-A.2011.35.7.723
  9. ADAMS User's Guide, MSC Software Corporation, 2005.
  10. PIAnO User's Guide, PIDOTECH, 2004.
  11. MATLAB User's Guide, MathWorks, 1984.
  12. Choi, J. H., Jung, S. I., Park, J. B., Lee, J., Hong, K. J. and Choi, D. H., 2002, "The Optimal Design of Switched Reluctance Motor Using Progressive Quadratic Response Surface Method," KIEE summer conference, Vol. 2002, No. 7, pp. 595-597.