DOI QR코드

DOI QR Code

Two-Dimensional Flood Inundation Analysis Resulting from Irrigation Reservoir Failure - Focused on the Real Case with the Minimal Data Set -

농업용 저수지 붕괴에 따른 2차원 홍수범람해석 -계측자료가 부족한 실제사례를 중심으로-

  • Received : 2016.01.14
  • Accepted : 2016.03.11
  • Published : 2016.04.01

Abstract

This study presents the applicability of two-dimensional (2D) flood inundation model by applying to real irrigation reservoir failure with limited available data. The study area is Sandae Reservoir placed in Gyeongju and downstream area of it and the reservoir was failured by piping in 2013. The breach hydrograph was estimated from one-dimensional (1D) hydrodynamic model and the discharge was employed for upstream boundary of 2D flood inundation model. Topography of study area was generated by integrating digital contour map and satellite data, and Cartesian grids with 3m resolution to consider geometry of building, road and public stadium were used for 2D flood inundation analysis. The model validation was carried out by comparing predictions with field survey data including reservoir breach outflow, flood extent, flood height and arrival time, and identifying rational ranges with allowed error. In addition, the applicability of 2D model is examined using different simulation conditions involving grid size, building and roughness coefficient. This study is expected to contributed to analysis of irrigation reservoirs were at risk of a failure and setting up Emergency Action Plan (EAP) against irrigation reservoir failure.

본 연구에서는 이용 가능한 자료가 제약이 있는 실제 농업용 저수지 붕괴에 대한 2차원 홍수범람해석의 적용성을 보여주었다. 연구 대상 유역은 2013년 파이핑 현상에 의해 붕괴가 발생한 경주 산대저수지 및 하류부 지역이다. 본 연구에서는 1차원 모형으로 파이핑 붕괴에 따른 유출수문곡선을 도출하고, 이를 2차원 수치모형의 상류단 경계조건으로 사용하여 모의를 수행하였다. 2차원 홍수파 해석을 위해서 수치지도와 위성자료를 합성하여 지형자료를 구성하였고, 건물, 도로, 운동장 등의 형상을 정확하게 반영하기 위해 $3m{\times}3m$ 크기의 정형격자를 사용하여 모의를 수행하였다. 현장조사된 저수지 붕괴유출량, 범람범위, 홍수심 그리고 홍수 전파시간과 계산치를 비교하고, 합리적인 범위의 결과를 보여줌으로써 모형의 검증을 수행하였다. 또한, 격자크기, 건물 및 조도계수가 홍수범람에 미치는 영향을 분석하였다. 본 연구는 향후 농업용 저수지의 붕괴해석 및 하류부의 비상대처계획 수립에 기초자료로 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Altinakar, M. S., McGrath, M. Z., Ramalingam, V. P. and Omari, H. (2010). "2D modeling of big bay dam failure in mississippi:Comparison with Field Data and 1D Model Results." River Flow 2010, pp. 547-554.
  2. Assooiation of State Dam Safety Officials (ASDSO) (2012). Living with Dams: Know your Risks. Association of State Dam Safety Officials.
  3. Bates, P. D., Stewart, M. D., Siggers, G. B., Smith, C. N., Hervouet, J. M. and Sellin, R. H. J. (1998). "Internal and external validation of a two-dimensional finite element model for river flood simulation." Proceedings of the Institution of Civil Engineers, Water Maritime and Energy, Vol. 130, pp. 127-141. https://doi.org/10.1680/iwtme.1998.30972
  4. Berga, L. (1992). New Trends in Design Flood Assessment, ICOLD Symposium on Dam Extreme Floods, Granada, Spain, September 1992.
  5. Choi, B. H. (2015). Disaster Risk Analysis and Management Improvement Plans of Agricultural Reservoirs, Master's Thesis, Kyungpook National University, Daegu, Korea (in Korean).
  6. Cristofano, E. A. (1965). "Method of computing rate for failure of earth fill dams." Bureau of Reclamation, Denver, CO, April.
  7. Feldhaus, R., Hoottges, J., Brockhaus, T. and Rouvee, G. (1992). "Finite element simulation of flow and pollution transport applied to a part of the river rhine." In: Falconer, R. A,. Shiono, K. and Matthews, R. G. S (Eds.), Hydraulic and environmental Modelling;Estuarine and River Waters, Ashgate Publishing, Aldershot, 323-344.
  8. Gee, D. M., Anderson, M. G. and Baird, L. (1990). "Large scale floodplain modeling." Earth Surface Processes and Landforms, Vol. 15, pp. 975-991.
  9. Han, K. Y. (1986). A Forecasting Model for the Floodwave Propagation Resulting from Fill Dam-break, Ph. D. Dissertation, Yonsei University, Seoul, Korea (in Korean).
  10. Han, K. Y. (1990). "Numerical simulation of the floodwave analysis resulting from dam failure - Flood on Dry Bed from Instantaneous Dam-Break." Water and Future, Korea Water Resources Association, pp. 467-476 (in Korean).
  11. Han, K. Y., Kim, B. H., Kim, T. H. and Lee, D. G. (2008). "Developement of a 2D numerical model using th WAF method." Proceedings of the Korea Water Resources Association Conference 2005, Korea Water Resources Association, pp. 1742-1746 (in Korean).
  12. Han, K. Y., Lee, J. T. and Lee, W. H. (1985). "An analysis of outflow hydrograph resulting from an earth dam-break." Journal of the Korea Society of Civil Engineers, Vol. 5, No. 2, pp. 41-50 (in Korean).
  13. Hervouet, J. M. and Van Haren, L. (1996). TELEMAC2D Version 3.0 Principle Note. Rapport EDF HE-4394052B, Electricite de France. Chatou Cedex: Departement Laboratoire National d'Hydraulique (in French).
  14. http://news.chosun.com/site/data/html_dir/2013/04/13/2013041300191.html
  15. http://news.naver.com/main/read.nhn?mode=LPOD&mid=tvh&oid=052&aid=0000452044
  16. http://www.imaeil.com/sub_news/sub_news_view.php?news_id=18525&yy=2013
  17. Hunter, N. M., Horritt, M. S., Bates, P. D., Wilson, M. D. and Wermer, Micha G. F. (2005). "An adaptive time step solution for raster-based storage cell modeling of floodplain inundation." Advances in Water Resources, Vol. 28, No. 9, pp. 975-991. https://doi.org/10.1016/j.advwatres.2005.03.007
  18. Jung, Y. H, Yeo, K. D., Kim, S. Y. and Lee, S. O. (2013). "The effect of uncertainty in roughness and discharge on flood inundation mapping." Journal of the Korea Society of Civil Engineers, Vol. 33, No. 3, pp. 937-945 (in Korean). https://doi.org/10.12652/Ksce.2013.33.3.937
  19. Korea Agricultural and Rural Infrastructure Corporation (KARICO) (2014). Report of monitoring sysytem for disaster prevention of agricultural structure, South Korea (in Korean).
  20. Kim, B. H. and Han, K. Y. (2016). "Flood inundation analysis resulting from two parallel reservoirs' failure." Journal of Korea Water Resources Association, Vol. 49, No. 2, pp. 121-132 (in Korean). https://doi.org/10.3741/JKWRA.2016.49.2.121
  21. Kim, B. H. and Sanders, B. F. (2016). "Dam-Break flood model uncertainty assessment : Case Study of Extreme Flooding with Multiple Dam Failures in Gangneung, South Korea." Journal of Hydraulic Engineering, ASCE (Online published).
  22. Kim, J. S. (2002). Development of a 2D Numerical Model Using the Weighted Average Flux Method, Master's Thesis, Kyungpook National University, Daegu, Korea (in Korean).
  23. Kim, Y. J. (2009). 2-Dimensional Flood Inundation Analysis Considering Building Effects, Master's Thesis, Kyungpook National University, Daegu, Korea (in Korean).
  24. Lee, J. T., Han, K. Y. and Lee, J. S. (1986). "A forecasting model for the floodwave propagation from the hypothetical earth dambreak." Journal of the Korea Society of Civil Engineers, Vol. 6, No. 4, pp. 69-78 (in Korean).
  25. Lencina, I. V. (2007). Comparison between 1D and 2D models to analyze the dam break wave, Master's Thesis, Royal Institute of Technology.
  26. MacDonald, T. C. and Jennifer, L. M. (1984). "Breaching characteristics of dam failure." Journal of Hydraulics Division ASCE, Vol. 110, No. 5, pp. 567-586. https://doi.org/10.1061/(ASCE)0733-9429(1984)110:5(567)
  27. Molinaro, P., Di Filippo, A. and Ferrari, F. (1994). "Modelling of flood wave propagation over flat dry areas of complex topography in presence of different infrastructures." In P. Molinaro and L. Natale (eds), Modelling of flood propagation over initially dry areas, American Society of Civil Engineers, New York, pp. 209-225.
  28. Moore, M. R. (2011). Development of a high-resolution 1D/2D coupled flood simulation of Charles City, Iowa, Master's Thesis, University of Iowa.
  29. Nicholas, A. P. and Mitchell, C. A. (2003). "Numerical simulation of overbank processes in topographically complex floodplain environments." Hydrological Processes, Vol. 17, No. 4, pp. 727-746. https://doi.org/10.1002/hyp.1162
  30. Park, S. J., Han, K. Y. and Choi, H. G. (2013). "Flood routing of sequential failure of dams by numerical model." Journal of the Korea Society of Civil Engineers, Vol. 33, No. 5, pp. 1797-1807 (in Korean). https://doi.org/10.12652/Ksce.2013.33.5.1797
  31. Peng, S. H. (2012). "1D and 2D numerical modeling for solving dam-break flow problems using finite volume method." Journal of Applied Mathematics, Vol. 2012, pp. 1-14.
  32. Ponce, V. M. and Tsivoglou, A. J. (1981). "Modeling gradual dam breaches." Journal of Hydraulics Division ASCE, Vol. 107, No. HY7, pp. 829-838.
  33. Ritter, A. (1892). "The propagation of water waves." V.D.I. Zeits-chr, Vol. 36, No. 33, pp. 947-954.
  34. Sene, K. (2013). Flash Flood : Forecasting and Warning, Springer.
  35. Singh, J., Altinakar, M. S. and Ding, Y. (2011). "Two-dimensional numerical modeling of dam-break flows over natural terrain using a central explicit scheme." Advanced in Water Resources, Vol. 34, 2011, pp. 1366-1375. https://doi.org/10.1016/j.advwatres.2011.07.007
  36. USBR (1983). Dam and Public Safety.
  37. USBR (1995). Safety Evaluation of Existing Dams.
  38. Wahl, T. L. (1998). Prediction of Embankment Dam Breach Parameters-A Literature Review and Need Assessment. Dam Safety Report, No. DSO-98-004, U. S. Dept. of the Interior, Denver: Bureau of Reclamation.