DOI QR코드

DOI QR Code

Configuring Excavator Attachments for Eco-Operation

에코토공을 위한 굴삭기 작업장치 최적 조합 탐색

  • 이홍철 (경북대학교 건설환경에너지공학부) ;
  • 김병수 (경북대학교 토목공학과) ;
  • 이동은 (경북대학교 건축토목공학부)
  • Received : 2016.01.07
  • Accepted : 2016.03.07
  • Published : 2016.04.01

Abstract

Configuring excavator attachments and engine sizes is the prerequisite for appropriate excavator assignment. Existing experience based configuration practice is lack of scientific rational because many variables (e.g., equipment motion data, soil and rock type and condition, equipment's engineering dimension along with bucket properties, job and management conditions etc.) should be considered simultaneously and timely fashion. This paper presents a new excavator configuration searching method that identifies the most favorable excavator configuration (i.e., the optimal set of excavator's maximum digging height and bucket size) to complement these existing practices. The method coded by using MATLAB identifies an optimal excavator configuration by considering those variables causing the variability of productivity. A case study is presented to demonstrate and to verify the system.

적합한 굴삭기 부착 작업 장치들과 엔진크기의 구성은 굴삭계획 전에 결정되어야한다. 기존의 경험에 근거하는 굴삭기 구성선택 관습은 다양한 변수들을(장비 동작데이터, 토사유형과 상태, 버킷 속성들, 작업조건 등) 동시에 그리고 시기적절하게 고려하지 못하기 때문에 과학적으로 타당한 근거가 부족하다. 따라서 본 논문은 이러한 기존의 방법을 보완하기 위해 가장 합리적인 굴삭기 구성을 판별하는 새로운 굴삭기 구성 탐색 방법을 제안한다. MATLAB을 사용하여 구현 된 본 방법은 생산성의 변동을 일으키는 변수들을 고려하여 최적 굴삭기 구성을 규명한다. 본 방법론을 검증하기 위해 사례연구를 수행하였다.

Keywords

References

  1. Caterpillar, Inc. (2014). Caterpillar performance handbook, 40th Ed., Caterpillar Peoria.
  2. Lee et al. (2015). "System for information providing of excavator combination and method for thereof." Korean Patent, 10-2015-0189873.
  3. Lim, T., Park, S., Lee, H. and Lee, D. (2015). "Artificial neural network-based slip-trip classifier using smart sensor for construction workplace." Journal Constr. Eng. Manage., Vol. 142, No. 2. doi : 10.1061/(ASCE)CO.1943-7862.0001049.
  4. Limsiri, C. (2011). "Optimization of loader-hauler fleet selection." European Journal of Scientific Research, Vol. 56, No. 2, pp. 266-271.
  5. Marzouk, M. and Moselhi, O. (2003). "Object-oriented simulation model for earthmoving operations." Journal of Const Engrg and Mangt., Vol. 129, No. 2, pp. 173-181. doi : 10.1061/(ASCE)0733-9364(2003)129:2(173).
  6. Moselhi, O. and Alshibani, A. (2009). "Optimization of earthmoving operations in heavy civil engineering projects." Journal of Const Engrg and Mangt., Vol. 135, No. 10, pp. 948-954. doi : 10.1061/(ASCE)0733-9364(2009)135:10(948).
  7. Nunnally, S. W. (2006). Construction Methods and Management, Prentice Hall PTR.
  8. Peurifoy, R. L., Schexnayder, C. J. and Shapira, A. (2009). Construction Planning, Equipment, and Methods, 7 th Ed. Mcgraw-Hill.
  9. Smith, S. D., Osborne, J. R. and Forde, M. C. (1995). "Analysis of earth-moving systems using discrete-event simulation." Journal Constr. Eng. Manage., Vol. 121, No. 4. pp. 388-396. doi : 10.1061/(ASCE)0733-9364(1995)121:4(388), 388-396.