DOI QR코드

DOI QR Code

A Study on Antioxidant Activity and Antioxidant Compound Content by the Types of Tea

다류의 유형별 항산화 성분함량 및 항산화 활성 연구

  • Kim, Myeong-Gil (Public Health Research Planning Team, Gyeonggi Province Institute of Health and Environment) ;
  • Oh, Moon-Seog (Public Health Research Planning Team, Gyeonggi Province Institute of Health and Environment) ;
  • Jeon, Jong-Sup (Public Health Research Planning Team, Gyeonggi Province Institute of Health and Environment) ;
  • Kim, Han-Taek (Public Health Research Planning Team, Gyeonggi Province Institute of Health and Environment) ;
  • Yoon, Mi-Hye (Public Health Research Planning Team, Gyeonggi Province Institute of Health and Environment)
  • 김명길 (경기도보건환경연구원 보건연구기획팀) ;
  • 오문석 (경기도보건환경연구원 보건연구기획팀) ;
  • 전종섭 (경기도보건환경연구원 보건연구기획팀) ;
  • 김한택 (경기도보건환경연구원 보건연구기획팀) ;
  • 윤미혜 (경기도보건환경연구원 보건연구기획팀)
  • Received : 2016.02.23
  • Accepted : 2016.04.08
  • Published : 2016.04.30

Abstract

The purpose of this study was to investigate the contents of antioxidant compounds and antioxidant activities in teas. A total of 99 teas were tested for their antioxidant activities based on their ability to scavenge DPPH (1,1-diphenyl-2-picrylhydrazyl) free radical. Antioxidant activity was expressed as mg of ascorbic acid equivalents per 100 g tea sample (L-ascorbic acid equivalent antioxidant capacity, AEAC) and was expressed as mg per 1 serving size (free radical scavenging activity, $FSC_{50}$). The total polyphenol contents of the extracts was quantified using the Folin-Ciocalteu method and the total flavonoid contents of the extracts was determined using a modied method of Davis. Vitamin C was analyzed by HPLC method. According to the AEAC value, mate tea, green tea, black tea, oriental raisin tea, chamomile tea and burdock tea showed relatively high antioxidant activities. Polyphenolic compounds were the major naturally occurring antioxidant compounds found in teas and the high concentrations of total polyphenol compounds were observed in black tea, green tea and mate tea. The high concentrations of total flavonoid compounds were observed in mate tea, black tea and yam tea and the amount of vitamin C contents were found to be high in citron tea and green tea. As a result, steeping tea was much higher in antioxidant activity than either powdered tea or liquefied tea. According to the study, a high correlation was demonstrated between the total polyphenol contents and antioxidant activities in teas (r = 0.846) and correlations between the total flavonoid contents and antioxidant activities was statistically significant in teas (r = 0.625). It was found that also the proportional relationship established among the total polyphenol content and antioxidant activities. That is, antioxidant activity of teas has been confirmed to have been caused by the total polyphenol.

본 연구는 다류의 항산화 활성과 항산화 물질 함량에 대한 조사연구를 목적으로 하였다. 총 99건의 다류에 대하여 DPPH (1,1-diphenyl-2-picrylhydrazyl)의 자유라디칼소거에 대한 능력을 가지고 항산화 활성을 조사하였다. 항산화 활성은 차 시료 100 g당 아스코르빈산 당량의 mg(L-아스코르빈산 동등한 항산화 능력, AEAC)과 1회 제공량 당 mg(자유라디칼 소거활성, $FSC_{50}$)으로 나타냈고 시료추출액에서의 폴리페놀 함량은 Folin-Ciocalteu법으로, 플라보노이드의 함량은 Davis변법으로 측정하였고 Vitamin C는 HPLC법으로 분석하였다. AEAC 값은 마테차, 녹차, 홍차, 헛개차, 국화차, 우엉차에서 상대적으로 높은 항산화 활성을 보였다. 폴리페놀 물질은 차에서 자연스럽게 발생하는 중요한 항산화 물질로 홍차, 녹차 그리고 마테차에서 높은 함량을 나타냈다. 플라보노이드는 마테차, 홍차 그리고 마차에서, Vitamin C는 유자차와 녹차에서 높은 함량을 나타냈다. 유형별로는 침출차가 고형차나 액상차보다 높은 항산화 활성을 나타냈다. 연구결과, 다류에는 폴리페놀 함량과 항산화 활성사이에는 높은 상관관계가 있었고 플라보노이드와 항산화 활성사이에는 통계적으로 유의한 상관 관계가 있었다. 즉, 다류의 항산화 활성은 폴리페놀에 의한 영향으로 확인되었다.

Keywords

References

  1. Kim, J.T.: Science and Culture of Tea, Borimsa Publishing Co., Seoul, Korea, pp. 157-248 (1996).
  2. Nakabayashi, T., Ina, K., Sakata, K.: Chemistry and Function of Green, Black and Oolong tea, Kogagu Press, Tokyo, Japan, pp. 20-51 (1994).
  3. Matsuzaki, T.L, Hara, Y.: Antioxidative activity of the leaf catechins, J. Agric. Chem. Soc., 59, 129-134 (1985).
  4. Yoshioka, H., Sugiura, K., Kawahara, R., Hujita, T., Makino, M., Kamiya, M., Tsuyumu, S.: Formation of radicals and chemiluminescence during the auto- oxidation of the catechins, Agri Biol. Chem., 55, 2717-2723 (1991).
  5. Song, J.M., Park, K.D., Lee, K.H., Byun, Y.H., Park, J.H., Kim, S.H., Kim, J.H., Seong, B.L.: Biological evaluation of anti-influenza viral activity of semisynthetic catechin derivatives, Antivir. Res., 76, 178-185 (2007). https://doi.org/10.1016/j.antiviral.2007.07.001
  6. Khan, S.M., Kour, G.: Subacute oral toxicity of chlorpyriphos and protective effect of green tea extract, Pestic. Biochem. Phys. 89, 118-123 (2007). https://doi.org/10.1016/j.pestbp.2007.04.005
  7. Mohan, K.V.P., Gunasekaran, P., Varalakshmi, E., Hara, Y., Nagini, S.: In vitro evaluation of the anticancer effect of lactoferrin and tea polyphenol combination on oral carcinoma cells, Cell Biol. Int., 31, 599-608 (2007). https://doi.org/10.1016/j.cellbi.2006.11.034
  8. Higdon, J.V., Frei, B.: Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions, Cri. Rev. Food Sci., 43, 89-143 (2003). https://doi.org/10.1080/10408690390826464
  9. Lee, L.S., Park, J.D., Cha, H.S., Lee Y.M., Park J.W. and Kim S.H.: Physicochemical Properties of Powdered Green Teas in Korea, Korean J. Food Sci. Technol., 42(1), 33-38 (2010).
  10. Chang, S.S., Ostric-Matijasevice, B., Hsieholiver, A.I. and Hyung., C.L.: Natural antioxidants from rosemary and sage, J. Food Sci. 42, 1102-1110 (1997).
  11. Bors, W. and Saran, M.: Radical scavenging by flavonoid antioxidants, FreeRad. Res. Comm., 2, 289-294 (1987).
  12. National academy of agricultural science, RDA.: Tables of food functional composition first edition, Munyoungdang, Suwon, Korea, pp. 1-349. (2009).
  13. Hertog, M.G.L., Hollman, P.C.H. and Katan, M.B.: Content of potentially anticarinogenic flavonoids of 28 vegetables and 9 fruits commonly consumed in the Netherlands, J. Agirc Food.Chem., 40, 2379-2383 (1992). https://doi.org/10.1021/jf00024a011
  14. Kandaswami, C., Middleton, E. Jr.: Free radical scavenging and antioxidant activity of plant flavonoids, in Free radicals in diagnostic medicine, Springer, 15, 351-376. (1994).
  15. Rice-Evans, C.A., Miller, H.J., Bolwell, O.G., Bramley, P.M. and Pridham, J.B.: The relative antioxidant activities of plantderived polyphenolic flavonoid, Free radical Res., 22, 375-383 (1995). https://doi.org/10.3109/10715769509145649
  16. Park, M.Y., Lee, G.S., Park, S.J.: Power food-super food, Blue happiness, Goyang-si, Korea, pp. 260-264 (2010).
  17. Choi, J.S., Oh, J.I., Hwang, I.T., Kim, S.E., Chun, J.C., Lee, B.H., Kim, J.S., Kim, T.J., Cho, K.Y.: Application and High Throughput Screening of DPPH Free Radical Scavenging Activity by using 96-Well Plate, Korean J. Pestic. Sci., 7, 92-99 (2003).
  18. Nicklisch, S.C., Waite, J.H.: Optimized DPPH Assay in a Detergent-Based Buffer System for Measuring Antioxidant Activity of Proteins, MethodsX, 1, 233-238 (2014). https://doi.org/10.1016/j.mex.2014.10.004
  19. Li, X., Chen, D., Wang, G., Lu, Y.: Probing the Interaction of Human Serum Albumin with DPPH in the Absence and Presence of the Eight Antioxidants, Spectrochim Acta A Mol Biomol Spectrosc, 137, 1144-1152 (2015). https://doi.org/10.1016/j.saa.2014.08.140
  20. Lee, C.Y., Kim, K.M., Son, H.S.: Optimal Extraction Conditions to Produce Rosemary Extracts with Higher Phenolic Content and Antioxidant Activity, Korean J. Food Sci. Technol., 45, 501-507 (2013). https://doi.org/10.9721/KJFST.2013.45.4.501
  21. Karahan, F., Kulak, M., Urlu, E., Gozuacik, H.G., Boyumez, T., Sekeroglu, N., Doganturk, I.H.: Total Phenolic Content, Ferric Reducing and DPPH Scavenging Activity of Arum Dioscoridis, Nat Prod Res., 29(7), 1678-1761 (2014).
  22. Varoni, E.M, Vitalini, S., Contino, D., Lodi, G., Simonetti, P., Gardana, C., Sardella, A., Carrassi, A., Iriti, M.: Effects of Red Wine Intake on Human Salivary Antiradical Capacity and Total Polyphenol Content, Food Chem. Toxicol., 58, 289-294 (2013). https://doi.org/10.1016/j.fct.2013.04.047
  23. Chang, C.C., Yang, M.H., Wen, H.M. and Chen, J.C.: Estimation of total flavonoid content in propolis by two complementary colorimetric methods, J. Food Drug Anal., 10, 178-182 (2002).
  24. Ministry of Food and Drug Safety, Korean Food Standards Code (2014).
  25. Cardozo, E.L. Jr., Ferrarese-Filho, O., Cardozo Filho, L., Ferrarese, M. de L.L., Donaduzzi, C.M., Sturion, J.A.: Methylxanthines and phenolic compounds in mate (Ilex paraguariensis St. Hil.) progenies grown in Brazil, J. Food Compos. Anal., 20(7), 553-558 (2007). https://doi.org/10.1016/j.jfca.2007.04.007
  26. Belitz, H.D. and Grosch, W., Food Chemistry, 2nd ed., Springer-Verlag, Berlin, pp. 886-893 (1999).
  27. Yum, S.: An introduction to (the study of) tea ceremony, Kookhak community Corp (2011).
  28. Yang, S.J., Youn, K.S., No, H.K., Lee, S.H., Hong, J.H.: Optimization of Extraction Conditions for Mate (Ilex paraguarensis) Ethanolic Extracts, Korean J. Food Preserv., 18(3), 319-327 (2011). https://doi.org/10.11002/kjfp.2011.18.3.319
  29. Ministry of Food and Drug Safety:Functional Ingredient of Health / Functional Foods (2011).
  30. Yu, T.J.: Food donguibogam, Academyboo, Paju-sipp, Korea, pp. 458 (1999).
  31. Shin, M. K.: Green tea science, Korean J. Dietary Culture, 9. 433-445 (1994).
  32. Macrae, R, Robinson, R.K., Sadler, M.J.: Tea. In Encyclopedia of food science, food technology and nutrition, Academic Press, San Diego, USA, pp. 4521-4542 (1993).
  33. Choi, Y.M., Kim, M.H., Shin, J.J., Park, J.M., Lee, J.S.: The Antioxidant Activities of the Some Commercial Teas. J. Korean Soc. Food Sci. Nutr., 32(5), 723-727 (2003). https://doi.org/10.3746/jkfn.2003.32.5.723

Cited by

  1. Anticariogenic Effects of Different Types of Tea vol.44, pp.4, 2017, https://doi.org/10.5933/JKAPD.2017.44.4.437