DOI QR코드

DOI QR Code

Characterization of crack self-healing of silicon carbide by hot press sintering

열간가압소결법으로 제조한 탄화규소의 균열자기치유 특성

  • Kim, Seong-Hoon (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technololgy) ;
  • Kim, Kyung-Hun (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technololgy) ;
  • Dow, Hwan-Soo (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technololgy) ;
  • Park, Joo-Seok (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technololgy) ;
  • Kim, Kyung-Ja (Business Cooperation Center, Korea Institute of Ceramic Engineering and Technololgy) ;
  • Shim, Kwang-Bo (Division of Materials Science and Engineering, Hanyang University)
  • 김성훈 (한국세라믹기술원 기업협력센터) ;
  • 김경훈 (한국세라믹기술원 기업협력센터) ;
  • 도환수 (한국세라믹기술원 기업협력센터) ;
  • 박주석 (한국세라믹기술원 기업협력센터) ;
  • 김경자 (한국세라믹기술원 기업협력센터) ;
  • 심광보 (한양대학교 신소재공학과)
  • Received : 2016.03.31
  • Accepted : 2016.04.19
  • Published : 2016.04.30

Abstract

In this study, it was investigated that characteristic of crack-self-healing of hot-pressed SiC. SiC ceramics was sintered with $Al_2O_3$ and $Y_2O_3$ sintering additive by hot press. Sintering was performed in hot-press furnace in flowing argon (Ar), holding for 3 hr under $1950^{\circ}C$ and 50 MPa. The sintered SiC was machined into 3-point bending strength specimen of $3{\times}4{\times}40mm$, and introduced pre-crack by Vickers indentation at 49.6 N. Specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), 3-point bending strength after heat treatment at $1200{\sim}1400^{\circ}C$ for 1~10 hr. The best crack-self-healing ability was achieved 770 MPa 3-point bending strength by heat treatment at $1300^{\circ}C$ for 5 hr.

본 연구에서는 열간가압소결법으로 SiC를 소결하여 균열자기치유 특성을 분석하였다. SiC는 $Al_2O_3$$Y_2O_3$를 소결조제로 $1950^{\circ}C$, 50 MPa, 아르곤(Ar) 분위기에서 소결하였다. 소결된 시편을 $3{\times}4{\times}40mm$, 절단 및 가공하고, Vickers 경도기를 이용하여 49.6 N으로 예비균열을 생성하였다. $1200{\sim}1400^{\circ}C$, 1~10시간 산화분위기에서 열처리한 후 XRD, SEM, 3점 굽힘강도를 측정하였다. $1300^{\circ}C$ 1시간에서 741 MPa, 5시간에서 770 MPa로 가장 우수한 균열자기치유 효과를 나타내는 것으로 분석되었다.

Keywords

References

  1. G.A. Slack, "Thermal conductivity of pure and impure silicon, silicon carbide, and diamond", J. Appl. Phys. 35 (1964) 3460. https://doi.org/10.1063/1.1713251
  2. D.L. Barrett and R.B. Campbell, "Electron mobility measurements in SiC polytypes", J. Appl. Phys. 38 (1967) 53. https://doi.org/10.1063/1.1709008
  3. L.H. Ford, N.S. Hibbert and D.G. Martin, "Recent developments of coatings for GCFR and HTGCR fuel particles and their performance", J. Nucl. Mater. 45 (1972) 139. https://doi.org/10.1016/0022-3115(72)90181-X
  4. L.L. Sneada, T. Nozawaa, Y. Katoha, T.-S. Byuna, S. Kondoa and D.A. Pettib, "Handbook of SiC properties for fuel performance modeling", J. Nucl. Mater. 371 (2007) 329. https://doi.org/10.1016/j.jnucmat.2007.05.016
  5. J.-W. Seo, J.-W. Kim, Y.-S. Hahn, K. Choi and J.-H. Lee, "Improvement of uniformity in chemical vapor deposition of silicon carbide using CFD", J. Korean Cryst. Growth Cryst. Technol. 24 (2014) 242. https://doi.org/10.6111/JKCGCT.2014.24.6.242
  6. J.J. Petrovic and L.A. Jacobson, "Controlled surface flaws in hot-pressed SiC," J. Am. Ceram. Soc. 59 (1976) 34. https://doi.org/10.1111/j.1151-2916.1976.tb09381.x
  7. T.K. Gupta, "Crack healing and strengthening of thermally shocked alumina", J. Am. Ceram. Soc. 59 (1976) 259. https://doi.org/10.1111/j.1151-2916.1976.tb10949.x
  8. S.R. Choi and V. Tikare, "Crack healing behaviour of hot pressed silicon nitride due to oxidation", Scr. Metall. Mater. 26 (1992) 1263. https://doi.org/10.1016/0956-716X(92)90574-X
  9. J.E. Moffatt, W.J. Plumbridge and R. Hermann, "High temperature crack annealing effect on fracture toughness of alumina and alumina-SiC composite", Br. Ceram. Trans. 95 (1996) 23.
  10. M.C. Chu, S. Sato, Y. Kobayashi and K. Ando, "Damage healing and strengthening behaviour in intelligent mullite/SiC ceramics", Fatigue Fract. Eng. Mater. Struct. 18 (1995) 1019.
  11. M.C. Chu, S. Sato, Y. Kobayashi and K. Ando, "Study on strengthening of mullite by dispersion of carbide ceramics particles (in Jpn.)", Jpn. Soc. Mech. Eng. 60 (1994) 2829. https://doi.org/10.1299/kikaia.60.2829
  12. K. Ando, T. Ikeda, S. Sato, F. Yao and Y. Kobayashi, "A preliminary study on crack healing behaviour of Si3N4/SiC composite ceramics", Fatigue Fract. Eng. Mater. Struct. 21 (1998) 119.
  13. Y.Z. Zhang, L. Edwards and W.J. Plumbridge, "Crack healing in a silicon nitride ceramics", J. Am. Ceram. Soc. 81 (1998) 34.
  14. K. Ando, S. Sato, Y. Kobayashi and M.C. Chu, "Crack healing behaviour of $Si_3N_4$ ceramics and its application to structural integrity", in Fracture from Defects, EFC- 12., M.W. Brown, E.R. de los Rios and K.J. Miller, (Engineering Materials Advisory Services, Sheffield, U.K., 1998) p. 497.
  15. K. Ando, K. Tsuji, M. Ariga and S. Sato, "Fatigue properties of crack healed mullite/SiC composite ceramics (in Jpn.)", J. Soc. Mater. Sci. Jpn. 48 (1999) 1151.
  16. K. Ando, M.C. Chu, S. Sato, F. Yao and Y. Kobayashi, "The study on crack healing behavior of silicon nitride ceramics (in Jpn.)", Jpn. Soc. Mech. Eng. 64 (1998) 1936. https://doi.org/10.1299/kikaia.64.1936
  17. G. Magnani, L. Beaulardi and A. Brentar, "Crack healing in liquid-phase-pressureless-sintered siliconcarbidealuminum nitridecom-posites", J. Eur. Ceram. Soc. 30 (2010) 769. https://doi.org/10.1016/j.jeurceramsoc.2009.08.002
  18. K.W. Nam and J.S. Kim, "Critical crack size of healing possibility of SiC ceramics", Mater. Sci. Eng. A. 527 (2010) 3236. https://doi.org/10.1016/j.msea.2010.02.004
  19. W. Nakao, S. Abe and K. Ando, "SiC nanometer sizing effect on self healing ability of structural ceramics", Ceram. Eng. Sci. Proc. (2009) 137.
  20. P.J. Jorgensen, M.E. Wardsworths and I.B. Cuter, "Oxidation of silicon carbide", J. Am. Cer. Soc. 42 (1959) 613. https://doi.org/10.1111/j.1151-2916.1959.tb13582.x
  21. M.C. Chu, S.J. Cho, Y.C. Lee, H.M. Park and D.Y. Yoon, "Crack healing in silicon carbide", J. Am. Cer. Soc. 87 (2004) 490. https://doi.org/10.1111/j.1551-2916.2004.00490.x
  22. Ceramic Source, Vol. 6 (American Ceramic Society, Westerville, OH, 1990) p. 352.