DOI QR코드

DOI QR Code

STABILITY ANALYSIS OF REGULARIZED VISCOUS VORTEX SHEETS

  • Sohn, Sung-Ik (Department of Mathematics Gangneung-Wonju National University)
  • Received : 2015.05.19
  • Published : 2016.05.31

Abstract

A vortex sheet is susceptible to the Kelvin-Helmhotz instability, which leads to a singularity at finite time. The vortex blob model provided a regularization for the motion of vortex sheets in an inviscid fluid. In this paper, we consider the blob model for viscous vortex sheets and present a linear stability analysis for regularized sheets. We show that the diffusing viscous vortex sheet is unstable to small perturbations, regardless of the regularization, but the viscous sheet in the sharp limit becomes stable, when the regularization is applied. Both the regularization parameter and viscosity damp the growth rate of the sharp viscous vortex sheet for large wavenumbers, but the regularization parameter gives more significant effects than viscosity.

Keywords

References

  1. D. W. Ambrose, Well-posedness of vortex sheets with surface tension, SIAM J. Math. Anal. 35 (2003), no. 1, 211-244. https://doi.org/10.1137/S0036141002403869
  2. G. R. Baker and M. J. Shelley, On the connection between thin vortex layers and vortex sheets, J. Fluid Mech. 215 (1990), 161-194. https://doi.org/10.1017/S0022112090002609
  3. G. Birkhoff, Helmholtz and Taylor instability, Proceedings of Symposia in Applied Mathematics, Vol. XIII, 55-76, American Mathematical Society, Providence, 1962.
  4. W.-S. Dai and M. J. Shelley, A numerical study of the effect of surface tension and noise on an expanding Hele-Shaw bubble, Phys. Fluids A 5 (1993), 2131-2146. https://doi.org/10.1063/1.858553
  5. J.-M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc. 4 (1991), no. 3, 553-586. https://doi.org/10.1090/S0894-0347-1991-1102579-6
  6. M. R. Dhanak, Equation of motion of a diffusing vortex sheet, J. Fluid Mech. 269 (1994), 265-281. https://doi.org/10.1017/S0022112094001552
  7. M. A. Fontelos and F. de la Hoz, Singularities in water waves and the Rayleigh-Taylor problem, J. Fluid Mech. 651 (2010), 211-239. https://doi.org/10.1017/S0022112009992710
  8. T. Y. Hou, G. Hu, and P. Zhang, Singularity formation in three-dimensional vortex sheets, Phys. Fluids 15 (2003), no. 1, 147-172. https://doi.org/10.1063/1.1526100
  9. F. de la Hoz, M. A. Fontelos, and L. Vega, The effect of surface tension on the Moore singularity of vortex sheet dynamics, J. Nonlinear Sci. 18 (2008), no. 4, 463-484. https://doi.org/10.1007/s00332-008-9020-3
  10. S.-C. Kim, Evolution of a two-dimensional closed vortex sheet in a potential flow, J. Korean Phys. Soc. 46 (2005), 848-854.
  11. R. Krasny, A study of singularity formation in a vortex sheet by the point-vortex approximation, J. Fluid Mech. 167 (1986), 65-93. https://doi.org/10.1017/S0022112086002732
  12. R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys. 65 (1986), 292-313. https://doi.org/10.1016/0021-9991(86)90210-X
  13. J.-G. Liu and Z. Xin, Convergence of vortex methods for weak solutions to the 2D Euler equations with vortex sheet data, Comm. Pure Appl. Math. 48 (1995), no. 6, 611-628. https://doi.org/10.1002/cpa.3160480603
  14. A. J. Majda, Remarks on weak solutions for vortex sheets with a distinguished sign, Indiana Univ. Math. J. 42 (1993), no. 3, 921-939. https://doi.org/10.1512/iumj.1993.42.42043
  15. D. W. Moore, The spontaneous appearance of a singularity in the shape of an evolving vortex sheet, Proc. Roy. Soc. London Ser. A 365 (1979), no. 1720, 105-119. https://doi.org/10.1098/rspa.1979.0009
  16. M. Nitsche, Singularity formation in a cylindrical and a spherical vortex sheet, J. Comput. Phys.173 (2001), 208-230. https://doi.org/10.1006/jcph.2001.6872
  17. T. Sakajo, Formation of curvature singularity along vortex line in an axisymmetric vortex sheet, Phys. Fluids 14 (2002), 2886-2897. https://doi.org/10.1063/1.1491255
  18. T. Sakajo and H. Okamoto, An application of Draghicescu's fast summation method to vortex sheet motion, J. Phys. Soc. Japan 67 (1998), 462-470. https://doi.org/10.1143/JPSJ.67.462
  19. M. J. Shelley, A study of singularity formation in vortex-sheet motion by a spectrally accurate vortex method, J. Fluid Mech. 244 (1992), 493-526. https://doi.org/10.1017/S0022112092003161
  20. S. Shin, S.-I. Sohn, and W. Hwang, Simple and efficient numerical methods for vortex sheet motion with surface tension, Internat. J. Numer. Methods Fluids 74 (2014), no. 6, 422-438. https://doi.org/10.1002/fld.3857
  21. S.-I. Sohn, Singularity formation and nonlinear evolution of a viscous vortex sheet model, Phys. Fluids 25 (2013), 014106. https://doi.org/10.1063/1.4789460
  22. S.-I. Sohn, Two vortex-blob regularization models for vortex sheet motion, Phys. Fluids 26 (2014), 044105. https://doi.org/10.1063/1.4872027
  23. G. Tryggvason, W. J. A. Dahm, and K. Sbeih, Fine structure of vortex sheet rollup by viscous and inviscid simulation, ASME J. Fluids Eng. 113 (1991), 31-36. https://doi.org/10.1115/1.2926492
  24. S. Wu, Mathematical analysis of vortex sheets, Comm. Pure Appl. Math. 59 (2006), no. 8, 1065-1206. https://doi.org/10.1002/cpa.20110