DOI QR코드

DOI QR Code

On-the-spot Observation and Nutrient Dynamics at Rice Paddy Fields in Seven of Large-scale Environment-friendly Agricultural Districts

광역친환경 논 농업단지 7개소 현장실사 및 양분동태

  • 최현석 (대구가톨릭대학교 원예학과) ;
  • 정석규 (대구가톨릭대학교 원예학과)
  • Received : 2016.01.18
  • Accepted : 2016.03.08
  • Published : 2016.05.30

Abstract

After carrying out on-the-spot observation targeting each farmhouse of large-scale environment-friendly agricultural district (LEAD), Suncheon, Sancheong, Jangheung, Yeongam, Hamyang, Okcheon, and Jeongseon in 2015, only one LEAD, a farmhouse in Jangheung had used sustainable compost coming out under their own non-antibiotic livestock. The soil pH and EC at a depth of 0-20 cm in the seven LEADs were ranged between 5.3-6.6 and $0.4-1.2dS\;m^{-1}$, respectively, with 0.03- 0.27% for T-N concentration, $22-322mg\;kg^{-1}$ for P, and $0.05-0.29mg\;kg^{-1}$, which were, in particular, low a farmhouse in Jeongseon. When intensively surveying on each farmhouse of Suncheon, Jangheung, and Okcheon for a growing period, seasonal soil pH was maintained above 6.0 and high in a farmhouse in Okcheon, with similar soil EC observed among the three LEADs. Seasonal soil T-N was 0.1% higher on the farmhouse in Suncheon than other two LEADs, with higher seasonal soil P observed on the farmhouse in Okcheon and higher soil K in the Jangheung. T-N concentration in rice (Oryza sativa L.) crops was the highest in Jangheung, and concentrations of T-N, P, and K decreased in a season. Plant height and number of tillers per hill were the highest on the farmhouse in Okcheon, where was similar or low plant diameter and SPAD levels compared to other two LEADs. Dry weight (DW) before harvest was ranged between 52-63 g, and DW, rough rice yield (kg), brown rice/rough rice (%), brown rice yield (kg), head rice (%), and broken rice (%) were not significantly different among the three LEADs. Total annual gross production ha-1 was the highest on the farmhouse in Okcheon (16,230,000 won) planting with high class of variety, 'Milky queen' at early maturation, which was expected to be increased on an agricultural income. However, high amount of fertilizer was applied for growing the following crops on the farmhouse in Okcheon, affecting the highest balance of T-N, P, and K more than $200kg\;ha^{-1}$.

광역친환경 농업단지 7곳(순천, 산청, 장흥, 영암, 함양, 옥천, 정선)의 농가를 대상으로 2015년에 현장 실사한 결과, 단 1곳(장흥)만이 무항생 가축을 사육하여 나온 친환경 퇴비를 이용하였다. 광역친환경 농업단지 7곳의 0~20 cm 깊이의 토양 pH는 5.3~6.6, EC는 $0.4{\sim}1.2dS\;m^{-1}$, 전질소는 0.03~0.27%, 인산은 $22{\sim}322mg\;kg^{-1}$, 칼륨은 $0.05{\sim}0.29mg\;kg^{-1}$이었고 특히 정선 지역의 농가에서 전체적으로 낮은 수준을 보였다. 순천, 장흥, 옥천의 3농가만을 재배 기간 동안 집중적으로 조사하였을 때 시기별 토양 pH는 6.0 이상을 유지한 옥천 농가에서 높았고 EC는 별다른 차이가 나타나지 않았다. 시기별 토양 전질소 농도는 순천 농가에서 다른 농가 보다 0.1% 이상 높았고 인산과 칼륨은 옥천과 장흥에서 각각 높게 나타났다. 벼의 전질소 농도는 장흥에서 가장 높았고 시기별 전질소, 인산, 칼륨 농도는 감소하는 경향을 보였다. 초장과 분얼수는 옥천 농가에서 가장 높았지만 직경이나 SPAD 수준은 비슷하거나 낮게 관찰되었다. 건물중은 수확 직전에는 주 당 52~63 g으로 별다른 차이가 없었고, 정조중(kg), 정현비율(%), 현미수량(kg), 완전립(%), 싸라기율(%)도 농가 간에 차이가 나타나지 않았다. 연간 조수입은 조생종이면서 고급품종인 '밀키퀸'을 식재한 옥천 농가가 ha당 1,623만원으로 가장 높아 농업소득 증대효과가 기대되었다. 하지만 옥천 농가는 후작물을 재배하는 관계로 비료투입량이 높아서 전질소, 인산, 칼륨 수지가 ha당 200 kg 이상으로 가장 높은 수준을 보였다.

Keywords

References

  1. Cha, K. H., H. J. Oh, H. G. Park, K. N. An, R. D. Park, and W. J. Jung. 2011. Comparison of growth, yield and quality by green crop treatments in rice (Oryza sativa L.) organic cultivation. Korean J. Organic Agri. 19: 55-64.
  2. Cho, J. L., Y. Lee, H. S. Choi, and W. S. Kim. 2011. The effects of organic materials on yield and N use efficiency of organic rice grown under frequent heavy rains. Korean J. Environ. Agric. 30: 138-143. https://doi.org/10.5338/KJEA.2011.30.2.138
  3. Choi, W. Y., J. H. Jeong, and S. Kim. 2014. Optimum nitrogen application amount of rice transplanting cultivation in newly reclaimed land. Korean J. Int. Agric. 26: 246-250. https://doi.org/10.12719/KSIA.2014.26.3.246
  4. Dawe, D., A. Dobermann, J. K. Ladha, R. L. Yadav, L. Bao, R. K. Gupta, P. Lal, G. Panaullah, O. Sariam, Y. Singh, A. Swarup, and Q.-X. Zhen. 2003. Do organic amendments improve yield trends and profitability in intensive rice systems? Field Crops Research 83: 191-213. https://doi.org/10.1016/S0378-4290(03)00074-1
  5. Epstein, E. and A. J. Bloom. 2005. Mineral nutrition of plants: principles and perspectives. Sinauer Associates, Inc., Sunderland, USA. pp. 41-159.
  6. Fan, M., R. Jiang, X. Liu, F. Zhang, S. Lu, X. Zeng, and P. Christie. 2005. Interactions between non-flooded mulching cultivation and varying nitrogen inputs in rice-wheat rotations. Field Crops Research 91: 307-318. https://doi.org/10.1016/j.fcr.2004.08.006
  7. Fan, M., S. Lu, R. Jiang, X. Liu, X. Zeng, K. W. T. Goulding, and F. Zhang. 2007. Nitrogen input, 15N balance and mineral N dynamics in a rice-wheat rotation in southwest China. Nutr. Cycl. Agroecosyst. 79: 255-265. https://doi.org/10.1007/s10705-007-9112-8
  8. Havlin, J. L., J. D. Beaton, S. L. Tisdale, and W. L. Nelson. 2004. Soil fertility and fertilizers. Pearson Education Inc., Upper Saddle River, USA. pp. 160-198.
  9. Heo, S. W. 2013. An analysis on farmer's awareness and satisfaction level of the project for developing large-scale environment-friendly agricultural districts. Korean J. Organic Agri. 21: 49-59. https://doi.org/10.11625/KJOA.2013.21.1.49
  10. Heo, S. W. and H. Kim. 2013. Strategies for sustainability of the project for developing large-scale environment-friendly agricultural districts. Korean J. Organic Agri. 21: 351-362. https://doi.org/10.11625/KJOA.2013.21.3.351
  11. Hokazono, S. and K. Hayashi. 2012. Variability in environmental impacts during conversion from conventional to organic farming: a comparison among three rice production systems in Japan. J. Clean Prod. 28: 101-112. https://doi.org/10.1016/j.jclepro.2011.12.005
  12. Huang, Q. R., F. Hu, S. Huang, H. X. Li, Y. H. Yuan, G. X. Pan, and W. J. Zhang. 2009. Effect of long-term fertilization on organic carbon and nitrogen in a subtropical paddy soil. Pedosphere 19: 727-734. https://doi.org/10.1016/S1002-0160(09)60168-5
  13. Jeyabal, A. and G. Kuppuswamy. 2001. Recycling of organic wastes for the production of vermicompost and its response in rice-legume cropping system and soil fertility. Europ. J. Agronomy 15: 153-170. https://doi.org/10.1016/S1161-0301(00)00100-3
  14. Kim, C. G., H. K. Jeong, and D. H. Moon. 2015. Actual production and market outlook of home and abroad environment-friendly agricultural products in 2015. KREI publisher, Naju, Korea. pp. 1-26.
  15. Kim, D. S., J. Song, J. I. Lee, A. Chun, E. G. Jeong, J. T. Kim, O. S. Hur, S. L. Kim, and S. J. Suh. 2009. Rice quality characterization according to damaged low temperature in rice plant. Korean J. Crop Sci. 54: 452-457.
  16. KMA. 2015. National weather data. Korea Meteorological Administration, Seoul, Korea.
  17. Ladha, J. K., D. Dawe, T. S. Ventura, U. Singh, W. Ventura, and I. Watanabe. 2000.Long-term effects of urea and green manure on rice yields and nitrogen balance. Soil Sci. Soc. Am. J. 64: 1993-2001. https://doi.org/10.2136/sssaj2000.6461993x
  18. Lee, J. E. and S. W. Heo. 2009. A study on the resource circulation system and construction of the regional agriculture focused on eco-industrial approach. Korean J. Organic Agri. 17: 151-170.
  19. Li, Z., M. Liu, X. Wu, F. Han, and T. Zhang. 2010. Effects of long-term chemical fertilization and organic amendments on dynamics of soil organic C and total N in paddy soil derived from barren land in subtropical China. Soil Tillage Res. 106: 268-274. https://doi.org/10.1016/j.still.2009.12.008
  20. Park, J. S., S. S. Lee, Y. H. Kim, and J. I. Choi. 2012. Analysis of economic effects for organic cultivation agriculture in rice. Korean J. Organic Agri. 20: 519-533. https://doi.org/10.11625/KJOA.2012.20.4.519
  21. Peng, S., F. V. Garcia, R. C. Laza, and K. G. Cassman. 1993. Adjustment for specific leaf weight improves chlorophyll meter's estimate of rice leaf nitrogen concentration. Agron. J. 85: 987-990. https://doi.org/10.2134/agronj1993.00021962008500050005x
  22. Phongpan, S. and A. R. Mosier. 2003. Effect of rice straw management on nitrogen balance and residual effect of urea-N in an annual lowland rice cropping sequence. Biol. Fertil. Soils 37: 102-107.
  23. RDA. 2003. Standard analysis method of soil and plant. RDA Press, Suwon. Korea. pp. 1-838.
  24. RDA. 2011. Criteria of fertilizer application in crops. National Academy of Agricultural Science, Sanglock Press, Suwon, Korea.
  25. RDA. 2015. Rice varietal in Korea. National Institute of Crop Science, RDA, Wanju, Korea.
  26. Saleque, M. A., M. J. Abedin, N. I. Bhuiyan, S. K. Zaman, and G. M. Panaullah. 2004. Long-term effects of inorganic and organic fertilizer sources on yield and nutrient accumulation of lowland rice. Field Crops Research 86: 53-65. https://doi.org/10.1016/S0378-4290(03)00119-9
  27. Singh, Y. S., B. Singh, J. K. Ladha, C. S. Khind, R. K. Gupta, O. P. Meelu, and E. Pasuquin. 2004. Long-term effects of organic inputs on yield and soil fertility in rice-wheat rotation. Soil Sci. Soc. Am. J. 68: 845-853.
  28. Xie, Z., Y. Xu, G. Liu, Q. Liu, J. Zhu, C. Tu, J. E. Amonette, G. Cadisch, J. W. H. Yong, and S. Hu. 2013. Impact of biochar application on nitrogen nutrition of rice, greenhouse-gas emissions and soil organic carbon dynamics in two paddy soils of China. Plant Soil 370: 527-540. https://doi.org/10.1007/s11104-013-1636-x
  29. Yang, C. H., J. H. Jeong, T. K. Kim, S. Kim, N. H. Baek, W. Y. Choi, Y. D. Kim, W. K. Jung, and S. J. Kim. 2010. Effect of long-term annual dressing of organic matter on physico-chemical properties and nitrogen uptake in the paddy soil of fluvio-marine deposit. Korean J. Soil Sci. Fert. 43: 981-986.
  30. Yang, S. B. and H. Kim. 2015. An analysis of performance and farmer's awareness on the large-scale environment-friendly agricultural districts. Korean J. Organic Agri. 23: 19-30. https://doi.org/10.11625/KJOA.2015.23.1.19