References
- D. E. Rumelhart and J. L. McClelland, "Parallel distributed processing: explorations in the microstructure of cognition," MIT Press, 1986.
- C. J. C. Burges, "A tutorial on support vector machines for pattern recognition," Journal of Data Mining and Knowledge Discovery, Vol.2, pp.121-167, 1998. https://doi.org/10.1023/A:1009715923555
- H. Y. Yeom, J. H. Kim, and Y. S. Moon, "Gene Classification Method using Neural Networks and Membership Function," Journal of IEEK, Vol. 42CI, No. 4, pp.33-42, 2005.
- S. K. Kang, Y. U. Kim, I. M. So, and S. T. Jung, "Enhancement of the Correctness of Marker Detection and Marker Recognition based on Artificial Neural Networks," Journal of KSCI, Vol. 13, No. 1, pp. 89-97, Jan. 2008.
- Kwang Seong Kim and Doosung Hwang, "Support Vector Machine Algorithm for Imbalanced Data Learning," Journal of KSCI, Vol. 15, No. 7, pp. 11-17, July 2010.
- J. H. Kim, T. W. Cho, S. W. Chun, J. M. Lee, and Y. S. Moon, "Gunnery Classification Method Using Profile Feature Extraction in Infrared Images," Journal of KSCI, Vol. 19, No. 10, October 2014
- Robi Polikar, "Ensemble based systems in decision making," IEEE Circuit and Systems, Vol.6, No.3, pp.21-45, 2006.
- P. Viola and M. Jones, "Robust real-time face detection," Int. Journal of Computer Vision, Vol.57, No.2, pp.137-154, 2004. https://doi.org/10.1023/B:VISI.0000013087.49260.fb
- L. Breiman, "Random forest," Machine Learning, Vol.45, pp.5-32, 2001. https://doi.org/10.1023/A:1010933404324
- J. H. Kim, K. H. Jang, J. H. Lee, and Y. S. Moon, "Multi-target Classification Method Based on Adaboost and Radial Basis Function," Journal of IEEK, Vol. 47 CI, No. 3, pp. 22-28, May 2010.
- K. Jung, J. Choi, and K. Jang, "Facial express recognition using registration and Adaboost," Journal of IEEK, Vol. 51, No. 11, pp.193-201, 2014.
- L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone," Chapman and Hall, 1993.
- R. Banfield, L. Hall, K. Bowyer, D. Bhadoria, W. P. Kegelmeyer, and S. Eschrich, "A comparison of ensemble creation technique," Proc. of Multiple Classifier Systems, Vol.1, pp.223-232, 2004.
- S. Bernard, L. Heutte, and S. Adam, "Influence of hyperparameters on random forest accuracy," Proc. of Workshop on Multiple Classifier Systems, Vol.1, pp.171-180, 2009.
- S. Bernard, L. Heutte, and S. Adam, "On the selection of decision trees in random forest," Proc. of Joint Conf. on Neural Networks, pp.302-307, 2009.
- E. Tripoli, D. Fotiadis, and G. Manis, "Dynamic construction of random forests: Evaluation using biomedical engineering problems," Proc. of IEEE Int. Conference on Information Technology and Application in Biomedicine, Vol.1, pp.3-5, 2010.
- S. Bernard, S. Adam, and L. Heutte, "Dynamic random forests," Journal of Pattern Recognition Letters, Vol.33, No.12, pp.1580-1586, 2012. https://doi.org/10.1016/j.patrec.2012.04.003
- F. Roli, G. Giacinto, and G. Vernazza, " Methods for designing multiple classifier systems," Proc. of 2nd International Workshop MCS2001, pp.78-87, 2001.
- I. S. Oh, J. S. Lee, and B. R. Moon, "Hybrid genetic algorithms for feature selection," IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.26, No.11, pp.1424-1437, 2004. https://doi.org/10.1109/TPAMI.2004.105
- K. S. Hu and I. S. Oh, "Genetic Algorithm for Node Pruning of Neural Networks," Journal of IEEK, Vol.46CI, No.2, pp.65-74, 2009.
- http://archive.ics.uci.edu/ml/
- C. M. Kim, Y. M. Baek, and H. Y. Kim, "An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor," Journal of IEIE, Vol.50, No.10, pp.162-170, 2013.
- R. Maclin, "Boosting Classifiers Regionally," In Proc. of the 15th National Conference on Artificial Intelligence, Vol.1, pp.700-705, 1998.
- Venkatadri M. and Srinivasa R. K., "A multiobjective genetic algorithm for feature selection in data mining," Journal of Computer Science and Information Technology, Vol.1, No.5, pp.443-448, 2010.
- T. G. Dietterich, "An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization," Journal of Machine Learning, Vol. 40, No.2, pp.139-157, 2010.
Cited by
- Study on Fault Detection of a Gas Pressure Regulator Based on Machine Learning Algorithms vol.25, pp.4, 2016, https://doi.org/10.9708/jksci.2020.25.04.019
- Compound Fault Diagnosis of Stator Interturn Short Circuit and Air Gap Eccentricity Based on Random Forest and XGBoost vol.2021, pp.None, 2021, https://doi.org/10.1155/2021/2149048