References
- C. Shu, A. Hampapur, M. Lu, L. Brown, J. Connell, A. Senior, and Y. Tian, "IBM Smart Surveillance System(S3): A Open and Extensible Framework for Event based Surveillance", IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 318-323, Como, Italy, September 2005.
- Predpol, http://www.predpol.com/
- J. W. Brahan, K. P. Lam, H. Chan and W. Leung, "AICAMS: Artificial Intelligence Crime Analysis and Management System", Knowledge-Based Systems, Vol. 11, No. 5, pp. 355-361, November, 1998. https://doi.org/10.1016/S0950-7051(98)00064-1
- Y. S. Chung, J. M. Kim and K. R. Park, "A Study of Improved Ways of the Predicted Probability to Criminal Types", Journal of The Korea Society of Computer and Information, Vol 17, No. 4, pp 163-172, April, 2012. https://doi.org/10.9708/jksci.2012.17.4.163
- Y. H. Kim and J. M. Mun, "A Study on the Development of Crime Prediction Program(CPP)", Journal of The Korea Society of Computer and Information, Vol. 11, No. 4, pp. 221-230, December, 2006.
- Daejeon Metropolitan City, http://www.daejeon.go.kr/uic/index.do
- T. Troscianko, A. Holmes, J. Stillman, M. Mirmehdi, D. Wright and A. Wilson, "What Happens Next? The Predictability of Natural Behaviour Viewed Through CCTV Cameras, Perception, Vol. 33, No. 1, pp. 87-101, January, 2004. https://doi.org/10.1068/p3402
- D. Grant and D. Williams, "The Importance of Perceiving Social Contexts When Predicting Crime and Antisocial Behaviour in CCTV Images", Legal and Criminological Psychology, Vol. 16, No. 2, pp. 307-322, September, 2011. https://doi.org/10.1348/135532510X512665
- I. Darker, A. Gale, L. Ward and A. Blechko, "Can CCTV reliably detect gun Crime?", IEEE Conference on Security Technology, pp 264-271. October, 2007.
- S. H. Bang, T. H. Kim and H. B. Cho, "A Study on the Applicability of Data Mining for Crime Prediction : Focusing on Burglary", Journal of The Korea Society of Computer and Information, Vol. 19, No. 12, December, 2014.
- Seoul Statistics, http://stat.seoul.go.kr
- L. Cohen, and M. Felson, "Social Change and Crime Rate Trends: A Route Activity Approach," American Sociological Review, Vol. 44, No. 4, pp. 588-608, August, 1979.
- P. Brantingham, and P. Brantingham, "Environmental Criminology," Wavelend Press Inc, pp. 27-54, 1991.
- S. Y. Ko, K. O. Kim, Y. D. Jung and D. H. Choi, "A Study to Classify Serial Sex Offenders Based on Crime Scene Actions", The Korean Journal of Forensic Psychology, Vol. 1, No. 3, pp. 171-183, November, 2010.
- J. R. Quinlan, "Introduction of decision trees", Machine learning, Vol. 1, No. 1, pp. 81-106, March, 1986. https://doi.org/10.1007/BF00116251
- J. R. Quinlan, "C4.5: Programs for Machine Learning", Elsevier, 2014.
- G. V. Kass, "An Exploratory Technique for Investigating Large Quantities of Categorical Data", Journal of the Royal Statistical Society. Series C (Applied Statistics), Vol. 29, No. 2, pp. 119-127, 1980.
- L. Breiman, J. Friedman, C. Stone and R.A. Olshen, "Classification and Regression Trees", CRC press, 1984
- Y. D. Kim, C. H. Jun and H. S. Lee, "A New Classification Method Using Penalized Partial Least Squares", Journal of the Korean Data & Information Science Society, Vol. 22, No. 5, pp. 931-940, October, 2011.
- E. Malthouse, A. Tamhane and R. Mah. "Nonlinear Partial Least Squares". Computers and Chemical Engineering, Vol. 21, No. 8, pp. 875-890, April, 1997. https://doi.org/10.1016/S0098-1354(96)00311-0
- S. Wold, M. Sjostrom and L. Eriksson, "PLS-regression: a Basic Tool of Chemometrics", Chemometrics and Intelligent Laboratory Systems, Vol. 58, No. 2, pp. 109-130, October, 2001. https://doi.org/10.1016/S0169-7439(01)00155-1
- F. Famili, W. M. Shen, R. Weber and E. Simoudis, "Data Pre-processing and Intelligent Data Analysis", International Journal on Intelligent Data Analysis, Vol. 1, No. 1, pp. 1-28, March, 1997. https://doi.org/10.1016/S1088-467X(98)00006-7
- S. Zhang, C. Zhang and Q. Yang, "Data Preparation for Data Mining", Applied Artificial Intelligence, Vol. 17, No. 5-6, pp. 375-381, November, 2003. https://doi.org/10.1080/713827180
Cited by
- 시·공간 데이터를 활용한 머신러닝 기반 범죄예측모형 비교 vol.37, pp.1, 2016, https://doi.org/10.5659/jaik.2021.37.1.135