DOI QR코드

DOI QR Code

Seismic Failure Probability of the Korean Disaster Risk Fill Dams Estimated by Considering Freeboard Only

여유고만으로 추정된 국내 재해위험 저수지의 지진시 파괴확률

  • 하익수 (경남대학교 토목공학과) ;
  • 이수권 (경남대학교 토목공학과) ;
  • 임정열 (한국수자원공사 K-water 연구원) ;
  • 정영훈 (경희대학교 사회기반시스템공학과)
  • Received : 2016.03.04
  • Accepted : 2016.04.14
  • Published : 2016.06.01

Abstract

The objective of this study is to illustrate the methods and procedures for estimating the failure probability of small fill dams subjected to earthquake events and to estimate the seismic failure probability of the Korean disaster risk fill dams where geotechnical information is not available. In this study, first of all, seismic failure probabilities of 7 disaster risk small fill dams, where geotechnical information is available, were evaluated using event tree analysis. Also, the methods and procedures for evaluating probabilities are illustrated. The relationship between dam height and freeboard for 84 disaster risk small dams, for which the safety diagnosis reports are available, was examined. This relationship was associated with the failure computation equation contained in the toolbox of US Army corps of engineers. From this association, the dam height-freeborard critical curve, which represents 'zero' failure probability, was derived. The seismic failure probability of the Korean disaster risk fill dams was estimated using the critical curve and the failure probabilities computed for 7 small dams.

본 연구의 목적은 소규모 필댐의 지진시 파괴확률을 산정하는 방법과 절차를 예시하고, 지반공학적 정보가 부족한 국내 재해위험 저수지의 지진시 파괴확률을 추정하는 것이다. 이를 위하여, 국내 재해위험 저수지로 지정된 저수지 중 지반공학적인 정보를 얻을 수 있는 7개 저수지에 대해 사건수 분석 기법을 적용하여 지진에 대한 파괴확률을 평가하였으며, 그 방법 및 절차를 예시하였다. 안전진단보고서를 확보한 84개 재해위험 저수지의 댐높이와 여유고와의 관계를 검토하였고, 미공병단 평가도구로 이용되는 파괴확률 산정식을 이러한 댐높이와 여유고와의 관계에 연관시켰다. 이러한 연관관계로부터, 지진시 파괴확률이 '0'이 되는 댐높이-여유고 임계곡선을 도출하였고, 이러한 임계곡선과 7개 저수지에 대해 산정한 지진시 파괴확률로부터 물성확보가 어려운 국내 재해위험 저수지의 개략적인 지진에 대한 파괴확률을 추정하였다.

Keywords

References

  1. Applied Technology Council (ATC) (1996). Improved seismic design criteria for California bridges: Provisional Recommendations, ATC-32, California Dep. of Transportation, p. 92.
  2. Beim, G. K. and Hobbs, B. F. (1997). "Event tree analysis of lock closure risks." Journal Water Resour. Plan Manag., ASCE, Vol. 123, pp. 137-198. https://doi.org/10.1061/(ASCE)0733-9496(1997)123:3(137)
  3. Engemoen, W., Fiedler, W. and Osmun, D. (2015). The role of empiricism in quantitative risk analysis, Proc. 35th Annul USSD Conference, USSD, Louisville, pp. 73-83.
  4. Hepler, T., Fiedler, B. and LaBoon, J. (2009). Risk analysis for Shasta dam raise, Proc. 29th Annul USSD Conference, USSD, Nashville, pp. 1167-1179.
  5. Korea Ministry of Land, Transport and Maritime Affairs (MLTM) (2011). Dam design criterion, MLTM, pp. 223-224 (in Korean).
  6. Korea Ministry of Public Safety and Security (MPSS) (2009). Act for safety management and disaster prevention of reservoirs and dams, Korea Presidential Decree No. 25840.
  7. Korea National Emergency Management (NEMA) (2013). Nation Earthquake Harzard Map, NEMA announcement No. 2013-179 (in Korean).
  8. Noh, K. L., Lim, J. Y., Mok, Y. J. and Jung, Y. H. (2014). "Estimating geotechnical system response probability of internal erosion risk in fill dam using event tree analysis." Journal of Korean Society of Civil Engineers, KSCE, Vol. 34, No. 6, December, pp. 1815-1829 (in Korean). https://doi.org/10.12652/Ksce.2014.34.6.1815
  9. Pace, T. G., Schaefer, J. A., O'Leary, T. M. and Rauch, A. F. (2008). Simplified estimation of seismic deformation for risk analysis, Proc. 28th Annul USSD Conference, USSD, Portland, pp. 521-532.
  10. Pell, S. and Fell, R. (2003). Damage and cracking of embankment dams by earthquake and the implications for internal erosion and piping, Proc. 21st Internal Congress on Large Dams, Montreal, ICOLD, Paris Q83-R17, Paris.
  11. Swaisgood, J. R. (2003). Embankment dam deformations caused by earthquakes, Proc. 2003 Pacific Conference on Earthquake Engineering, Seattle, Washington.
  12. US Army Corps of Engineers (USACE) (2009). Internal erosion toolbox.
  13. US Bureau of Reclamation (USBR) and US Army Corps of Engineers (USACE) (2015). Best practices in dam and levee safety risk analysis-methods to evaluate seismic risks for embankments, Ver.4.0, July.
  14. US Nuclear Regulatory Commission (1975). Reactor safety study: An Assessment of Accident Risks in U.S. Commercial Nuclear Power Plants, WASH-1400, Nuclear Regulatory Commission, Washington, DC, U.S.
  15. Yegian, M. K., Marciano, E. A. and Ghaharman, V. G. (1991). "Seismic risk analysis for earth dams." Journal Geotech. Engrg., Vol. 117, No. 1, January, pp. 18-34. https://doi.org/10.1061/(ASCE)0733-9410(1991)117:1(18)