DOI QR코드

DOI QR Code

Seasonal Variations of Epilithic Biofilm Biomass and Community Structure at Byeonsan Peninsula, Korea

한국 변산반도 암반생물막의 생물량과 군집구조의 계절 변화

  • Kim, Bo Yeon (Jeju Fisheries Research Institute, NFIS) ;
  • Park, Seo Kyoung (Institute of Coastal Management and Technology) ;
  • Lee, Jung Rok (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University) ;
  • Choi, Han Gil (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University)
  • 김보연 (국립수산과학원 제주수산연구소) ;
  • 박서경 ((주)연안관리기술연구소) ;
  • 이정록 (원광대학교 생명과학부 및 환경과학연구소) ;
  • 최한길 (원광대학교 생명과학부 및 환경과학연구소)
  • Received : 2016.11.18
  • Accepted : 2016.12.21
  • Published : 2016.12.30

Abstract

The community structure and abundance of epilithic biofilm were bimonthly examined to know spatial and temporal patterns of biofilm biomass and taxonimical composition at the two study sites, Gosapo and Gyeokpo with different degrees of wave exposure levels from November 2010 to September 2011. Biomass was estimated by using chlorophyll a contents (Chl a), normalized difference vegetation index (NDVI), and vegetation index (VI). Cyanobacteria such as Aphanotece spp. predominated in the proportion of 57.53% at Gosapo and of 61.12% at Gyeokpo and they are abundant in mid shore and in summer at both study sites. The diatoms Navicula spp., Achnanthes spp. and Licmophora spp. were common species and they showed an increasing trend from high to low shore. NDVI, VI, and chl a contents were the greatest at mid shore for Gosapo (0.44, 3.05, $24.56{\mu}g/cm^2$) and at low shore for Gyeokpo (0.41, 2.73, $17.98{\mu}g/cm^2$). NDVI, VI, and chl a content were all maximal in January and minimal in March at the both sites. Average NDVI, VI, and chlorophyll a contents of biofilms were greater at Gosapo (0.43, 2.89, $22.84{\mu}g/cm^2$) than Gyeokpo (0.38, 2.48, $15.48{\mu}g/cm^2$).Of three shore levels(high, mid, and low) Chl a contents were positively correlated with NDVI and VI at the two study sites indicating that non-destructive NDVI and VI values can be used in stead of destructive Chl a extraction method. In conclusion, epilithic biofilm was more abundant seasonally in winter, vertically in mid and low intertidal zone, and horizontally at wave exposed shore than in summer, at high and sheltered shore in Korea.

암반생물막의 군집구조와 생물량의 시, 공간적인 변화를 확인하기 위하여, 파도에 대한 노출이 다른 고사포와 격포에서 11월부터 2011년 9월까지 격월로 암반조각을 채집하였다. 군집구조는 채집된 암반조각을 칫솔로 긁어 광학현미경하에서 미세조류의 분류군별 개체수를 계수하여 분석하였고, 생물량은 NDVI, VI, 엽록소 a 농도를 측정하여 확인하였다. 고사포와 격포의 조간대 암반생물막에서 가장 우점하는 분류군은 Aphanotece spp., Lyngbya spp.를 포함하는 남조류였으며, 환경스트레스가 적은 조간대 하부에서는 규조류의 출현율이 높게 나타났다. 암반생물막에서 우점하는 규조류는 Navicula spp., Achnanthes spp.와 Licmophora spp.로 확인되었다. 식생지수와 엽록소 a 농도는 격포에 비해 고사포 생물막에서 높게 나타났다. 식생지수인 NDVI와 VI는 고사포에서 각각 0.49-0.40(평균 0.43), 2.64-3.22(평균 2.90)였으며, 격포의 암반생물막은 NDVI와 VI가 각각 0.32-0.41(평균 0.38), 2.03-2.86(평균 2.48)으로 확인되었다. 엽록소 a의 농도는 고사포에서 $12.79-32.87{\mu}g/cm^2$(평균 $22.84{\mu}g/cm^2$)였고, 격포에서는 $11.14-18.25{\mu}g/cm^2$(평균 $15.48{\mu}g/cm^2$)로 식생지수와 마찬가지로 1월(겨울)에 최대, 3월(봄)에 최소인 계절 변화를 보였다. 엽록소 a 농도는 NDVI, VI와 양의 상관관계를 보여 비파괴적인 식생지수 측정방법이 파괴적인 엽록소 a 추출 방법을 대체할 수 있음을 알려준다. 결론적으로 암반생물막은 여름보다 겨울에, 조간대 상부보다 중부와 하부에서, 파도에 보호된 해안보다 노출된 해안에서 높은 값을 보였다.

Keywords

References

  1. Al-Thukair A.A., R.M.M. Abed and L. Mohamed (2007) Microbial community of cyanobacteria mats in the intertidal zone of oil-polluted coast of Saudi Arabia. Mar Poll Bull 54: 173-179. https://doi.org/10.1016/j.marpolbul.2006.08.043
  2. Barille L., J.L., Mouget, V. Meleder, P. Rosa and B. Jesus (2011) Spectral response of benthic diatoms with different sediment backgrounds. Remote Sens Environ 115: 1034-1042. https://doi.org/10.1016/j.rse.2010.12.008
  3. Bell E.C. and M.W. Denny (1994) Quantifying “wave exposure”: a simple device for recording maximum velocity and results of its use at several field sites. J Exp Mar Biol Ecol 181: 9-29. https://doi.org/10.1016/0022-0981(94)90101-5
  4. Boaventura D., L. Cancela, L.C. da Fonseca and S.J. Hawkins (2002) Analysis of competitive interactions between the limpets Petella depressa Pennants and Patella vulgate L. on the northern coast of Portugal. J Exp Mar Biol Ecol 271: 171-188. https://doi.org/10.1016/S0022-0981(02)00044-8
  5. Castenholz R.W. (1961) Effect of grazing on marine littoral diatom populations. Ecology 42: 783-794. https://doi.org/10.2307/1933507
  6. Castenholz R.W. (1963) An experimental study of the vertical distribution of littoral marine diatoms. Limnol Oceanogr 8: 450-462. https://doi.org/10.4319/lo.1963.8.4.0450
  7. Chan B.K.K., W.K.S. Chan and G. Walker (2003) Patterns of biofilm succession on a sheltered rocky shore in Hong Kong. Biofouling 19: 371-380. https://doi.org/10.1080/08927010310001645229
  8. Choi C.H., S.W. Jung, S. M. Yun, S.H. Kim and J.G. Park (2013) Changes in phytoplankton communities and environmental factors in Saemangeum artificial lake, South Korea between 2006 and 2009. Korean J Environ Biol 31: 213-224. https://doi.org/10.11626/KJEB.2013.31.3.213
  9. Dye A.H. and D.R.A White (1991) Intertidal microalgal production and molluscan herbivory in relation to season and elevation on two rocky shores on the east coast of southern Africa. S Afr J Mar Sci 11: 483-489. https://doi.org/10.2989/025776191784287646
  10. Farina J.M., J.C. Castilla and F.P. Ojeda (2003) The "idiosyncratic" effect of a "Sentinel" species on contaminated rocky intertidal communities. Ecol Appl 13: 1533-1552. https://doi.org/10.1890/02-5216
  11. Hawkins S.J. and R.G. Hartnoll (1983) Grazing of intertidal algae by marine invertebrates. Oceanogr Mar Biol Annu Rev 21: 195-285.
  12. Hill A.S. and S.J. Hawkins (1991) Seasonal and spatial variation of epilithic microalgal distribution and abundance and its ingestion by Patella vulgate on a moderately exposed rocky shore. J Mar Biol Assoc UK 71: 403-423. https://doi.org/10.1017/S0025315400051675
  13. Honeywill C., D.M. Paterson, S.E. Hagerthey (2002) Determination of microphytobenthic biomass using pulse-amplitude modulated minimum fluorescence. Eur J Phycol 37: 485-492. https://doi.org/10.1017/S0967026202003888
  14. Jackson A.C., A.J. Underwood, R.J. Murphy, G.A. Skilleter (2010) Latitudinal and environmental patterns in abundance and composition of epilithic microphytobenthos. Mar Ecol Prog Ser 417: 27-38. https://doi.org/10.3354/meps08722
  15. Jenkins S.R. and R.G. Hartnoll (2001) Food supply, grazing activity and growth rate in the limpet Patella vulgate L.: a comparison between exposed and sheltered shores. J Exp Mar Biol Ecol 258: 123-139. https://doi.org/10.1016/S0022-0981(01)00211-8
  16. Jesus B., C.R. Mendes, V. Brotas and D.M. Paterson (2006) Effects of sediment type on microphytobenthos vertical distribution: Modelling the productive biomass and improving ground truth measurements. J Exp Mar Biol Ecol 332: 60-74. https://doi.org/10.1016/j.jembe.2005.11.005
  17. Jesus B., J-L. Mouget and R.G. Perkins (2008) Detection of diatom xanthophyll cycle using spectral reflectance. J Phycol 44: 1349-1359. https://doi.org/10.1111/j.1529-8817.2008.00583.x
  18. Jones J.G. (1974) A method for observation and enumeration of epilithic algae directly on the surface of stones. Oecologia (Berlin) 16: 1-8. https://doi.org/10.1007/BF00345084
  19. Jordan C.F. (1969) Derivation of leaf area index from quality of light on the forest floor. Ecology 50: 663-666. https://doi.org/10.2307/1936256
  20. Kim Y.G., J.W. Park, K.G. Jang and W. Yih (2009) Cyclic change of phytoplankton community in Mankyeong river estuary prior to the completion of the Saemankeum seawall. Ocean Polar Res 31: 63-70. https://doi.org/10.4217/OPR.2009.31.1.063
  21. Kromkamp J., C. Barranguet and J. Peene (1998) Determination of microphytobenthos PSII quantum efficiency and photosynthetic activity by means of variable chlorophyll fluorescence. Mar Ecol Prog Ser 162: 45-55. https://doi.org/10.3354/meps162045
  22. Laba M., F. Tsai, D. Ogurcak, S. Smith and M.E. Richmond (2005) Field determination of optimal dates for the discrimination of invasive wetland plant species using derivative spectral analysis. Photogramm. Eng Remote Sens 71: 603-611. https://doi.org/10.14358/PERS.71.5.603
  23. Lamontagne I., A. Cardinal and L. Fortier (1989) Environmental forcing versus endogenous control of photosynthesis in intertidal epilithic microalgae. Mar Ecol Prog Ser 51: 177-187. https://doi.org/10.3354/meps051177
  24. Leigh E.G., R.T. Paine, J.F. Quinn and T.H. Suchanek (1987) Wave energy and intertidal productivity. Proc natn Acad Sci USA 84: 1314-1318. https://doi.org/10.1073/pnas.84.5.1314
  25. Lock M.A. (1993) Attached microbial communities in rivers. In: Ford TA (ed) Aquatic microbiology. Blackwell Scientific Publications, Oxford, UK, pp 113-138.
  26. Louchard E.M., R.P. Reid, F.C. Stephens, C.O. Davis, R.A. Leathers, T.V. Downes and R.A. Maffione (2002) Derivative analysis of absorption features in hyperspectral remote sensing data of carbonate sediments. Opt Express 10: 1573-1584. https://doi.org/10.1364/OE.10.001573
  27. MacLulich J.H. (1987) Variations in the density and variety of intertidal epilithic microflora. Mar Ecol Prog Ser 40: 285-293. https://doi.org/10.3354/meps040285
  28. McQuaid C.D. and G.M. Branch (1984) Influence of sea temperature, substratum and wave exposure on rocky intertidal communities: an analysis of faunal and floral biomass. Mar Ecol Prog Ser 19: 145-151. https://doi.org/10.3354/meps019145
  29. Murphy R.J., T.J. Tolhurst, M.G. Chapman and A.J. Underwood (2004) Estimation of surface chlorophyll on an exposed mudflat using digital colour infrared (CIR) photography. Estuar Coast Shelf Sci 59: 625-638. https://doi.org/10.1016/j.ecss.2003.11.006
  30. Murphy R.J., A.J. Underwood and M.H. Pinkerton (2006) Quantitative imaging to measure photosynthetic biomass on an intertidal rock-platform. Mar Ecol Prog Ser 312: 45-55. https://doi.org/10.3354/meps312045
  31. Murphy R.J., A.J. Underwood, M.H. Pinkerton and P. Range (2005) Field spectrometry: new methods to investigate epilithic micro-algae on rocky shores. J Exp Mar Biol Ecol 325: 111-124. https://doi.org/10.1016/j.jembe.2005.04.018
  32. Murphy R.J., A.J. Underwood, T.J. Tolhurst, M.G. Chapman (2008) Field-based remote-sensing for experimental intertidal ecology: Case studies using hyperspatial and hyperspectral data for New South Wales (Australia). Remote Sens Environ 112: 3353-3365. https://doi.org/10.1016/j.rse.2007.09.016
  33. Nagarkar S., G.A. Williams (1997) Comparative techniques to quantify cyanobacteria dominated epilithic biofilms on tropical rocky shores. Mar Ecol Prog Ser 154: 281-291. https://doi.org/10.3354/meps154281
  34. Nagarkar S., G.A. Williams (1999) Spatial and temporal variation of cyanobacteria-dominated epilithic communities on a tropical shore in Hong Kong. Phycologia 38: 385-393. https://doi.org/10.2216/i0031-8884-38-5-385.1
  35. Norton T.A., R.C. Thompson, J. Pope, C.J. Veltkamp, B. Banks, C.V. Howard and S.J. Hawkins (1998) Using confocal laser scanning microscopy, scanning electron microscopy and phase contrast light microscopy to examine marine biofilms. Aquat Microb Ecol 16: 199-204. https://doi.org/10.3354/ame016199
  36. Ortega-Morales B.O., J.L. Santiago-Garcia and A. Lopez-Cortes (2005) Biomass and taxonomic richness of epilithic cyanobacteria in a tropical intertidal rocky habitat. Bot. Mar. 48: 116-121.
  37. Perkins R.G., K. Oxborough, A.R.M. Hanlon, G.J.C. Underwood and N.R. Baker (2002) Can chlorophyll fluorescence be used to estimate the rate of photosynthetic electron transport within microphytobenthic biofilms? Mar Ecol Prog Ser 228: 47-56. https://doi.org/10.3354/meps228047
  38. Ray S. (2006) Cyanobacteria. New Age International Publishers. New Delhi, India, pp. 1-178.
  39. Rouse J.W., R.H. Haas, J.A. Schell, D.W. Deering (1973) Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium. NASA SP-351, Washington, pp. 309-317.
  40. Ruban A.V. and R. Horton (1995) Regulation of nonphotochemical quenching of chlorophyll fluorescence in plants. Aust J Plant Physiol 22: 221-230. https://doi.org/10.1071/PP9950221
  41. Sabater S. and J.R. Roca (1990) Some factors affecting distribution of diatom assemblages in Pyrenean Springs. Freshwater Biol 24: 493-507. https://doi.org/10.1111/j.1365-2427.1990.tb00727.x
  42. Serodio J., P. Cartaxana, H. Coelho and S. Vieira (2009) Effects of chlorophyll fluorescence on the estimation of microphytobenthos biomass using spectral reflectance indices. Remote Sens Environ 113: 1760-1768. https://doi.org/10.1016/j.rse.2009.04.003
  43. Shim J.H. (1994) Illustrated Encyclopedia of Fauna and Flora of Korea, Marine Phytoplankton, vol 34. Ministry of Education, Seoul, Korea, pp. 1-487.
  44. Sokal R.R. and F.J. Rohlf (1981) Biometry (2nd edn). New York: WH Feeman and Company 668.
  45. Stephens F.C., E.M. Louchard, R.P. Reid and R.A. Maffione (2003) Effects of microalgal communities on reflectance spectra of carbonate sediments in subtidal optically shallow marine environments. Limnol Oceanogr 48: 535-546. https://doi.org/10.4319/lo.2003.48.1_part_2.0535
  46. Thompson R.C., T.A. Norton and S.J. Hawkins (1998) The influence of epilithic microbial films on the settlement of Semibalanus balanoides cyprids-a comparison between laboratory and field experiments. Hydrobiologia 375/376: 203-216. https://doi.org/10.1023/A:1017036301082
  47. Thompson R.C., T.A. Norton and S.J. Hawkins (2004) Physical stress and biological control regulate the producer-consumer balance in intertidal biofilms. Ecology 85: 1372-1382. https://doi.org/10.1890/03-0279
  48. Thompson R.C., P.S. Moschella, S.P. Jenkins, T.A. Norton and S.J. Hawkins (2005) Differences in photosynthetic marine biofilms between sheltered and moderately exposed rocky shores. Mar Ecol Prog Ser 296: 53-63. https://doi.org/10.3354/meps296053
  49. Thompson R.C., M.L. Tobin, S.J. Hawkins and T.A. Norton (1999) Problems in extraction and spectrophotometric determination of chlorophyll from epilithic microbial biofilms: towards a standard method. J Mar Biol Assoc 79: 551-558. https://doi.org/10.1017/S0025315498000678
  50. Underwood A.J. (1984a) Microalgal food and the growth of the intertidal gastropods Nerita atramentosa Reeve and Bembicium nanum (Lamarck) at four heights on a shore. J Exp Mar Biol Ecol 79: 277-291. https://doi.org/10.1016/0022-0981(84)90201-6
  51. Underwood A.J. (1984b) The vertical-distribution and seasonal abundance of intertidal microalgae on a rocky shore in New South Wales. J Exp Mar Biol Ecol 78: 199-220. https://doi.org/10.1016/0022-0981(84)90159-X
  52. Yallop M.L., B.D. Winder, D.M. Paterson and L.J. Stal (1994) Comparative structure, primary production and biogenic stabilization of cohesive and non-cohesive marine sediments inhabited by microphytobenthos. Estuar Coast Shelf Sci 39: 565-582. https://doi.org/10.1016/S0272-7714(06)80010-7
  53. Zarco-Tejada P.J., J.C. Pushnik, S. Dobrowski and S.L. Ustin (2003) Steady-state chlorophyll a fluorescence detection from canopy derivative reflectance and double-peak red-edge effects. Remote Sens Environ 84: 283-294. https://doi.org/10.1016/S0034-4257(02)00113-X