DOI QR코드

DOI QR Code

Relationship between Aboveground Biomass and Measures of Structure and Species Diversity in Quercus mongolica-Dominated Forest, Mt. Jeombong

점봉산 신갈나무군락의 생물종 다양성, 구조 다양성과 지상부 생물량의 관계에 대한 연구

  • Jeong, Heon Mo (Division of Basic Research, National Institute of Ecology) ;
  • Jang, Inyoung (Division of Ecosystem Services & Research Planning, National Institute of Ecology) ;
  • Hong, Seungbum (Division of Basic Research, National Institute of Ecology)
  • 정헌모 (국립생태원 생태기반연구실) ;
  • 장인영 (국립생태원 융합연구실) ;
  • 홍승범 (국립생태원 생태기반연구실)
  • Received : 2016.10.05
  • Accepted : 2016.12.20
  • Published : 2016.12.30

Abstract

Relationships of standing biomass with biodiversity and structural diversity were examined in the Quercus mongolica-dominated forest in Mt. Jeombong, Gangwon-do. We examined the standing biomass of the Q. mongolia community ($311.1ton{\cdot}ha^{-1}$) from 2004 to 2013, and the observed major species were Q. mongoilca, Carpinus cordata, Tilia amurensis whose standing biomasses were $206.3ton{\cdot}ha^{-1}$ (66.3%), $36.9ton{\cdot}ha^{-1}$ (11.9%), and $30.6ton{\cdot}ha^{-1}$ (9.8%), respectively. Although the number of Q. mongolica individuals was very small compared with total density, the reason that Q. mongolica showed the most biomass than other species is due to greater average diameter at breast height (DBH) and the higher number of $DBH{\geq}50cm$ individuals. We calculated the range of Shannon index (H') and Shannon evenness (J') in the Q. mongolica community, and they were gradually increased in time, showing 2.015~2.166, 0.673~0.736, respectively. Their H' and J' showed positive linear relationships with their standing biomass. This indicates that the spatial distribution of the standing biomass in Q. mongoilca community becomes more homogeneous with time and this homogenization appears in various species in the community. In addition, we estimated biomass-species index (BS) and abundance-biomass-speciesdiversity (ABS) and they also showed gradual increase in time, ranging from 3.746 to 3.811 and from 4.781 to 5.028, respectively. Their indices showed positive linear relationships with the standing biomass. This can be explained from the observations of variations in standing biomass with tree diameters as the differences in the average standing biomass in the community have reduced gradually in time. Moreover, it is expected that increase in the structure diversity of the Q. mongoilca community enhances the efficiency in carbon sequestration and productivity, so the community can be developed to a more sustainable ecosystem with more abundant resources. Thus, applications of uneven-aged plantations with considerations of local ecological properties can be a very efficient reforestation method to ensure stable support of biodiversity and productivity.

본 연구는 강원도 점봉산에 분포하고 있는 신갈나무군락에서 군락의 지상부 생물량과 생물종 다양성, 그리고 군락 구조의 다양성 간의 관계 특성을 밝히기 위하여 수행되었다. 이를 위해, 2004년부터 2013년까지 점봉산 신갈나무군락에서 측정한 지상부 생물량은 총 $311.1ton{\cdot}ha^{-1}$였으며, 종 별 생물량 및 구성 비율은 신갈나무 $206.3ton{\cdot}ha^{-1}$(66.3%),까치박달 $36.9ton{\cdot}ha^{-1}$(11.9%),피나무 $30.6ton{\cdot}ha^{-1}$(9.8%)등의 순으로 적었다. 신갈나무의 지상부 생물량이 가장 많은 것은 전체에 비해 임목 밀도가 많지 않지만, 평균 흉고직경(DBH)이 50cm 이상인 개체수 비율이 다른 수종에서 보다 월등히 높기 때문인 것으로 판단된다. 이 군락의 종 다양성 지수(H')와 종 균등도(J')를 추정해 본 결과 각각 2.015~2.166과 0.673~0.736의 범위 내에서 시간에 따른 점진적인 증가를 보여 주고 있다. 위의 종 다양성 지수와 종 균등도는 지상부 생물량과 높은 양의 상관관계를 나타내는데, 이는 시간이 변함에 따라 신갈나무군락의 지상부 생물량이 공간적으로 균일해진다는 것과 이러한 현상이 다양한 수종에 걸쳐 나타나고 있다는 것을 의미한다. 또한, 생물량-종 다양성 지수(BS)와 종 풍부도-생물량-종 다양성 지수(ABS)도 각각 3.746~3.811, 4.781~5.028 범위 내에서 시간에 따른 점진적인 증가를 보여주고 있었으며, 이들 지수와 지상부 생물량 높은 양의 상관관계가 관찰되었다. 이는 신갈나무군락의 지상부 생물량이 다양한 수종에서 뿐만 아니라 다양한 직경급에 따라 균일해 지고 있음을 나타낸다. 그리고 점봉산 신갈나무군락은 군락의 구조적 다양성을 통하여 생산성과 탄소 저장 능력이 더욱 효율화 되어, 자원이 풍부한 생태계로서의 역할을 수행 할 것으로 예상된다. 또한 복원된 산림의 생물다양성과 생산성의 유지를 위하여 생태적 특성을 고려한 다양한 수종과 다양한 DBH 수목의 선택적 식재를 제안한다.

Keywords

References

  1. Ali A., M. S. Xu, Y. T. Zhao, Q. Q. Zhang, L. L. Zhou, X. D. Yang and E. R. Yan. (2015) Allometric biomass equations for shrub and small tree species in subtropical China. Silva Fennica 49: id1275
  2. Caspersen, J. P., S. W. Pacala (2001) Successional diversity and forest ecosystem function. Ecological Research 16: 895-03 https://doi.org/10.1046/j.1440-1703.2001.00455.x
  3. Cheon, K., J. Byun, S. Jeong and J. Sung (2013) Community structure of Quercus mongolica stand in Hyangrobong area, Baekdudaegan. Journal of agriculture & life science 48: 1-13(in Korean with English abstract)
  4. Con, T. V., N. T. Thang, D. T. T. Ha, C. C. Khiem, T. H. Quy, V. T. Lam, T. V. Do and T. Sato (2013) Relationship between aboveground biomass and measures of structure and species diversity in tropical forests of Vietnam. Forest Ecology and Management. 310: 213-218 https://doi.org/10.1016/j.foreco.2013.08.034
  5. Creed, R. P., R. P. Cherry, J. R. Pflaum and C. J. Wood (2009) Dominant species can produce a negative relationship between species diversity and ecosystem function. Oikos 118: 723-32 https://doi.org/10.1111/j.1600-0706.2008.17212.x
  6. Danescu, A., A. T. Albrecht, J. Bauhus. 2016. Structural diversity promotes productivity of mixed, uneven-aged forests in southwestern Germany. Oecoloia 182: 319-333 https://doi.org/10.1007/s00442-016-3623-4
  7. Do, T. V., A. Osawa and N. T. Thang (2010) Recovery process of a mountain forest after shifting cultivation in Northwestern Vietnam. Forest ecology and management 259: 1650-1659 https://doi.org/10.1016/j.foreco.2010.01.043
  8. Dong L., L Zhnag and F. Li (2015) Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees 29: 1149-1163 https://doi.org/10.1007/s00468-015-1196-1
  9. Hector, A., B. Schmid, C. Beierkuhnlein, M. C. Caldeira, M. Diemer, P. G. Dimitrakopoulos, J. A. Finn, H. Freitas, P. S. Giller, J. Good, R. Harris, P. Hogberg, K. Huss-Danell, J. Joshi, A. Jumpponen, C. Korner, P. W. Leadley, M. Loreau, A. Minns, C. P. H. Mulder, G. O'Donovan, S. J. Otway, J. S. Pereira, A. Prinz, D. J. Read, M. Scherer-Lorenzen, E. D. Schulze, A. S. D. Siamantziouras, E. M. Spehn, A. C. Terry, A. Y. Troumbis, F. I. Woodward, S. Yachi and J. H. Lawton (1999) Plant diversity and productivity experiments in European grasslands. Science 286: 1123-1126. https://doi.org/10.1126/science.286.5442.1123
  10. Hooper, D.U., F. S. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setala, A. J. Symstad, J. Vandermeer and D. A. Wardle (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs. 75: 3-35 https://doi.org/10.1890/04-0922
  11. Ishii, H. T., S. Tanabe and T. Hiura (2004) Exploring the relation ships among canopy structure, stand productivity and biodiversity of temperate forest ecosystems. Forest science 50: 342-355
  12. Keddy, P. (2005) Putting the plants back into plant ecology: six pragmatic models for understanding and conserving plant diversity. Ann. Bot. 96: 177-189 https://doi.org/10.1093/aob/mci166
  13. Korea National Arboretum (2014) Geography and vegetation of Mt. Jumbong experimental forest. Sumeungil Press. Seoul (in Korean)
  14. Kwak, J. I., K. J. Lee, B. H. Han, J. H. Song and J. S. Jang (2013) A study on the vegetation structure of evergreen broad-leaved forest. Korean Journal of Environmental Ecology 27: 241-252 (in Korean with English abstract)
  15. Kwak, Y. S., Y. K. Hur, J. H. Song and J. K. Hwangbo (2004) Quantification of atmospheric purification capacity by afforestation impact assessment of Kwangyang Steel Works. Research Institute of Industrial Science & Technology 18(4): 334-340 (in Korean with English abstract)
  16. Kwon, K. C. and D. K. Lee (2006) Above- and below-ground biomass and energy content of Quercus mongolica. Journal of Korean For. Energ. Society 25: 31-38(in Korean with English abstract)
  17. Lee, H. Y., J. H. Lee and C. W. Yun (2015) Characteristics of species composition and community structure for the forest vegetation of aspect area in Mt. Eungbok. Korean J. En. Ecol. 29: 791-802(in Korean with English abstract) https://doi.org/10.13047/KJEE.2015.29.5.791
  18. Lee, W. S., J. H. Kim and G. Z. Jin (2000) The analysis of successional trends by topographic posotions in the natural deciduous forest of Mt. Chumbong. Journal of Korean Forestry Society 89: 655-665(in Korean with English abstract)
  19. Lei, X., W. Wang and C. Peng (2009) Relationships between stand growth and structural diversity in spruce-dominated forests in New Brunswick, Canada. Can. J. For. Res. 39: 1835-1847 https://doi.org/10.1139/X09-089
  20. Lim J. H., J. H. Shin, G. Z. Jin, J. H. Chun, and S. O. Jeong (2003) Forest stand structure, site characteristics and carbon budget of the Kwangneung National Forest in Korea. Korean Journal of agricultural and Fores Meteorology 5: 101-109(in Korean with English abstract)
  21. Magurran, A. E (1988) Ecological diversity and Its measurement. Princeton University Press. Princeton N. J.
  22. Martinez-Sanchez, J. L., B. J. Tigar, L. Camara and O. Castillo (2016) Relationship between structural diversity and carbon stocks in humid and sub-humd tropical forest of Mexico. Ecoscience at: 21-26
  23. Ministry of environment (2013) Long-Term Ecological Research. 2133p. (in Korean)
  24. Merino, A, C. Real, J. G. Alvarez-Gonzalez and M. A. Rodriguez-Guitian (2007) Forest structure and C stocks in natural Fagus sylvatica forest in southern Europe: The effects of past management. Forest ecology and management 250: 206-214 https://doi.org/10.1016/j.foreco.2007.05.016
  25. Mulder C. P. H., E. Bazeley-White, P. G. Dimitrakopoulos, A. Hector, M. Scherer-Lorenzen and B. Schmid (2004) Species evenness and productivity in experimental plant communities. Oikos 107: 50-63 https://doi.org/10.1111/j.0030-1299.2004.13110.x
  26. Ni, J. X. Zhang and JMO Scurlock (2001) Synthesis and analysis of biomass and net primary productivity in Chinese forest. Ann. of for. sci. 58: 351-384 https://doi.org/10.1051/forest:2001131
  27. Odum, E. P (1971) Fundamentals of Ecology. Philadelphia, PA, USA, W. B. Saunders & Co.
  28. Park, I. H., D. Y. Kim, Y. H. Son, M. J. Yi, H. O Jin and Y. H. Choi (2005) Biomass and net production of a natural Quercus mongoilca forest in Namsan, Seoul. Korean Journal of Environmental Ecology 19: 299-304(in Korean with English abstract)
  29. Park. I. H. and K. D. Kim (1986) Forest structure, biomass, and net production in a natural forest ecosystem at Mt. Baekun area. Journal of Korea Forestry Energy 6: 1-45(in Korean with English abstract)
  30. Park, I. H., Y. K. Seo, D. Y. Kim, Y. H. Son, M. J. Yi and H. O Jin (2003) Biomass and net production of a Quercus mongolica stand and a Quercus variabilis stand in Chuncheon, Kangwon-do. Journal of Korean Forestry Society 92: 52-57(in Korean with English abstract)
  31. Rapp, M., I. S. Regina, M. Rico and H. A. Gallego (1999) Biomass, nutrient content litterfall and nutrient return to the soil in Mediterranean oak forests. Forest ecology and management 119: 39-49 https://doi.org/10.1016/S0378-1127(98)00508-8
  32. Son, Y., D. Y. Kim, I. H. Park, M. J. Yi and H. O Jin (2007) Production and nutrient cycling of oak forests in Korea: Acase study of Quercus mongoilca and Q. variabilis stands. Kangwon national university press 57p. (in Korean)
  33. Son, S. Y., K. C. Kwon and T. S. Jeong (2002) Productive structure and net production of Quercus mongolica forest in Mt. Taehwa (Kwangju, Kyeonggi-do). Journal of Korea Forestry Energy 21: 76-82(in Korean with English abstract)
  34. Son Y. M., R. H. Kim, K. H. Lee, J. K. Pyo, S. W. Kim, J. S. Hwang, S. J. Lee and H. Park (2014) Carbon emission factors and biomass allometric equations by species in Korea. KFRI (in Korean with English abstract)
  35. Stocker, R., Ch. Korner, B. Schmid, P. A. Niklaus and P. W. Leadley (1999) A field study of the effects of eleveated $CO_2$ and plant species diversity on ecosystem-level gas exchange in a planted calcareous grassland. Global change biology 5: 95-105 https://doi.org/10.1046/j.1365-2486.1998.00198.x
  36. Szwagrzyk, J. and A. Gazda (2007) Above-ground standing biomass and tree species diversity in natural stands of Central Europe. Journal of Vegetation Science 18: 555-562 https://doi.org/10.1111/j.1654-1103.2007.tb02569.x
  37. Ter-Mikaelian M. T. and M. D. Korzukhin (1997) Biomass equations for sixty-five North American tree species. For. Ecol. Manage 97: 1-24 https://doi.org/10.1016/S0378-1127(97)00019-4
  38. Tilman, D., D. Woding and J. Knops (1996) Productivity and sustainability influenced by biodiversity in grassland ecosystem. Nature 379: 718-720 https://doi.org/10.1038/379718a0
  39. Vance-Chalcraft, H. D., M. R. Willing, S. B. Cox, A. E. Lugo and F. N. Scatena (2010) Relationship between aboveground biomass and multiple measures of biodiversity in subtropical forest of Puerto Rico. Biotropica 42: 290-299 https://doi.org/10.1111/j.1744-7429.2009.00600.x
  40. Wang C. (2006) Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests. Forest Ecology and Management 222: 9-16 https://doi.org/10.1016/j.foreco.2005.10.074
  41. Wang, W., X. Lei, Z. Ma, D. D. Kneeshaw and C. Peng (2011) Positive relationship between aboveground carbon stocks and structural diversity in spruce-dominated forest stands in New Brunswick, Canada. Forestry Science 57: 506-515
  42. Whittaker, R. H. and G. E. Likens (1973) Primary production: The bioosphere and Man. Human Ecology 1: 357-369 https://doi.org/10.1007/BF01536732
  43. Wilsey, B. J. and C. Potvin (2000) Biodiversity and ecosystem functioning: Importance of species evenness in an old field. Ecology 81: 887-892 https://doi.org/10.1890/0012-9658(2000)081[0887:BAEFIO]2.0.CO;2
  44. Yuste, J. C., B. Konopka, I. A. Janssens, K. Coenen, C. W. Xiao and R. Ceulemans (2005) Contrasting net primary productivity and carbon distribution between neighboring stands of Quercus robur and Pinus sylvestris. Tree physiology 25: 701-712 https://doi.org/10.1093/treephys/25.6.701