DOI QR코드

DOI QR Code

압축목재를 사용한 LNG 화물창 단열시스템의 적합성 평가에 관한 연구

A study of feasibility of using compressed wood for LNG cargo containment system

  • Kim, Jong-Hwan (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Ryu, Dong-Man (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Park, Seong-Bo (Department of Naval Architecture and Ocean Engineering, Pusan National University) ;
  • Noh, Byeong-Jae (Structure Research Department, Hyundai Heavy Industries) ;
  • Lee, Jae-Myung (Department of Naval Architecture and Ocean Engineering, Pusan National University)
  • 투고 : 2015.11.12
  • 심사 : 2016.05.04
  • 발행 : 2016.05.31

초록

액화 천연가스(LNG)를 운반, 저장하는 화물창은 LNG의 기화를 막기 위해 항상 저온의 상태로 유지되어야 한다. 이러한 극한 환경으로 인해 LNG 화물창에 적용되는 단열시스템의 기술은 상당히 중요하다. 이러한 이유로 LNG 화물창 단열시스템 내에는 구조 및 단열성능을 가지는 적층형 목재인 플라이우드(plywood)가 널리 사용되고 있다. 그러나 최근 슬로싱(sloshing)으로 인한 플라이우드의 파손현상이 보고되면서 이를 해결하기 위한 강도적인 보강이 필요할 것으로 보인다. 따라서 본 연구에서는 B타입 LNG 탱크의 지지대로 사용되는 적층형 목재인 압축목재(compressed wood)를 플라이우드를 대체하기 위한 대체 재료로 고려하게 되었다. 이를 위해 압축목재에 대해 압축 및 굽힘시험을 수행하였고 기계적 물성과 파손특성을 확인하였다. 또한 온도와 적층방향을 실험변수로 설정하여 이에 따른 압축 목재의 특성 변화를 분석하였다. 마지막으로 참고문헌을 통해 획득한 플라이우드의 물성과 실험결과를 비교하여 압축 목재의 적용가능성을 평가하였다.

When liquefied natural gas (LNG) is stored in a tank, it is necessary to maintain low temperature. It is very important that insulation techniques are applied to the LNG cargo because of this extreme environment. Hence, laminated wood, especially plywood, is widely used as the structural member and insulation material in LNG cargo containment systems (CCS). However, fracture of plywood has been reported recently, owing to sloshing effect. Therefore, it is necessary to increase the strength of the structural member for solving the problem. In this study, compressed wood, which is used as a support in LNG independent type B tanks, was considered as a substitute for plywood. Compression and bending tests were performed on compressed wood under ambient and cryogenic temperatures to estimate the mechanical behaviors and fracture characteristics. In addition, the direction normal to the laminates surface was considered as an experimental variable. Finally, the feasibility of using compressed wood for an LNG CCS was evaluated from the test results.

키워드

참고문헌

  1. J. H. Kim, S. K. Kim, M. S. Kim, and J. M. Lee, "Numerical simulation of membrane of LNG insulation system using user defined material subroutine," Journal of the Computational Structural Engineering Institute of Korea, vol. 27, no. 4, pp. 265-271, 2014. https://doi.org/10.7734/COSEIK.2014.27.4.265
  2. J. H. Kim, S. W. Choi, D. H. Park, and J. M. Lee, "Cryogenic charpy impact test based on GTAW method of AISI 304 stainless steel for LNG pipeline," Journal of Welding and Joining, vol. 32, no. 3, pp. 89-94, 2014. https://doi.org/10.5781/JWJ.2014.32.3.89
  3. S. W. Choi, J. U. Roh, M. S. Kim, and W. I. Lee, "Thermal analysis of two main CCS (Cargo Containment System) insulation box by using experimental thermal properties," Journal of the Computational Structural Engineering Institute of Korea, vol. 24, no. 4, pp. 429-438, 2011.
  4. J. M. Lee and M. H. Lee, "Impact strength assessment of LNG carrier insulation system," Key Engineering Materials, vol. 326-328, pp. 1527-1530, 2006. https://doi.org/10.4028/www.scientific.net/KEM.326-328.1527
  5. J. F. Kuo, R. B. Campbell, S. M. Hoie, A. J. Rinehart, R. E. Sandstrom, and T. W. Yung, "LNG tank sloshing assessment methodology- The new generation," International Journal of Offshore and Polar Engineering, vol. 19, no. 4, pp. 241-253, 2009.
  6. A. Silker, "Orthotropic strains in compression parallel to grain tests," Forest products Journal (USA), vol. 35, pp. 18-26, 1985.
  7. T. E. Conners and P. J. Medvecz, "Wood as a bimodular," Wood Fiber Science, vol. 24, pp. 413-423, 1992.
  8. R. Alexander and P. J. Stefanie, "Compressive behavior of softwood under uniaxial loading at different orientations to the grain," Mechanics of Materials, vol. 33, pp. 705-71, 2001. https://doi.org/10.1016/S0167-6636(01)00086-2
  9. Z. Xinan, Z. Qiuhong, W. Siqun, T. Rosa, L. C. Edga, and D. Guan, "Characterizing strength and fracture of wood cell wall through uniaxial micro-compression test," Composites: Part A, vol. 41, pp. 632-638, 2010. https://doi.org/10.1016/j.compositesa.2010.01.010
  10. E. Burdurlu, M. Kilic, A. C. Ilce, and O. Uzunkavak, "The effect of ply organization and loading direction on bending strength and modulus of elasticity in laminated veneer lumber (LVL) obtained from beech (Fagus orientalis L.) and Lombardy poplar(Populus nigra L.)," Construction and Building Materials, vol. 21, pp. 1720-1725, 2007. https://doi.org/10.1016/j.conbuildmat.2005.05.002
  11. B. Anshari, Z. W. Guan, A. Kitamori, K. Jung, I. Hassel, and K. Komatsu, "Mechanical and moisture-dependent swelling properties of compressed Japanese cedar," Construction and Building Materials, vol. 25, pp. 1718-1725, 2011. https://doi.org/10.1016/j.conbuildmat.2010.11.095
  12. A. Yutaka, K. Hisayoshi, N. Hisashi, and Y. Yoshiyuki, "Effective thermal conductivity of compressed woods," International Journal of HEAT and MASS TRANSFER, vol. 45, pp. 2243-2253, 2002. https://doi.org/10.1016/S0017-9310(01)00330-1
  13. Y. B. Hoong, Y. F. Loh, A. W. N. Hafizah, M. T. Paridah, and H. Jalauddin, "Development of a new pilot scale production of high grade oil palm plywood: Effect of pressing pressure," Materials and Design, vol. 36, pp. 215-219, 2012. https://doi.org/10.1016/j.matdes.2011.10.004
  14. W. I. Lee and M. S. Yun, "Experimental analysis of pultrusion process for phenolic foam composites," Composite Research, vol. 18, no. 3, pp. 47-52, 2005.
  15. Z. Z. Zhang, H. J. Zhang, F. Guo, K. Wang, and W. Jiang, "Enhanced wear resistance of hybrid PTFE/Kevlar fabric/phenolic composite by cryogenic treatment," Journal of Materials Science, vol. 44, no. 22, pp. 6199-6205, 2009. https://doi.org/10.1007/s10853-009-3862-4
  16. M. Hussain, A. Nakahira, S. Nishijima, and K. Niihara, "Evaluation of mechanical behavior of CFRC transverse to the fiber direction at room and cryogenic temperature," Composite Part A: Applied Science and Manufacturing, vol. 31, no. 2, pp. 173-179, 2000. https://doi.org/10.1016/S1359-835X(99)00060-3
  17. S. Wang, S. Adanur, and B. Z. Jang, "Mechanical and thermos-mechanical failure mechanism analysis of fiber/filler reinforced phenolic matrix composites," Composite Part B: Engineering, vol. 28, no. 3, pp. 215-231, 1997. https://doi.org/10.1016/S1359-8368(96)00042-X
  18. AS Latvijas Finieris Plywood handbook, http://www.riga-wood.se/pdf/Plywood_handbook_ 2010.pdf, Accessed October 28, 2015.
  19. WISA-Birch Brochure & catalog, http://www.wisaplywood.com/SiteCollectionDocuments/Brochures/WI SA-Birch_EN_fs.pdf, Accessed October 28, 2015.
  20. J. H. Kim, D. H. Park, C. S. Lee, K. J. Park, and J. M. Lee, "Effect of cryogenic thermal cycle and immersion on the mechanical characteristics of phenol-resin bonded plywood," Cryogenics, vol. 72, no. 1, pp. 90-102, 2015. https://doi.org/10.1016/j.cryogenics.2015.09.007
  21. N. H. Ab. Wahab, P. M. Tahir, N. Y. Mohd Yunus, Z. Ashaari, A. C. C. Yong, and N. A. Ibrahim, "Influence of resin molecular weight on curing and thermal degradation of plywood made from phenolic prepreg palm veneers," The Journal of Adhesion, vol. 900, no. 3, pp. 210-229, 2014.
  22. C. Tenorio, R. Moya, and F. Munoz, "Comparative study on physical and mechanical properties of laminated veneer lumber and plywood panels made of wood from fast-growing Gmelina arborea trees," Journal of Wood Science, vol. 57, no. 2, pp. 134-139, 2011. https://doi.org/10.1007/s10086-010-1149-7
  23. Z. Cai and R. J. Ross, Mechanical Properties of Wood-based Composite Materials, General Technical Report FPL-GTR-190, Forest Products Laboratory, United States, 2010.

피인용 문헌

  1. Plywood의 기계적 특성 및 파손 거동 분석에 관한 실험적 연구 vol.56, pp.4, 2016, https://doi.org/10.3744/snak.2019.56.4.335
  2. Effects of cryogenic temperature on some mechanical properties of beech (Fagus orientalis Lipsky) wood vol.79, pp.2, 2016, https://doi.org/10.1007/s00107-020-01639-1