DOI QR코드

DOI QR Code

Study of Lower Hybrid Current Drive for the Demonstration Reactor

  • Received : 2014.11.28
  • Accepted : 2016.01.18
  • Published : 2016.06.25

Abstract

Steady-state operation of a fusion power plant requires external current drive to minimize the power requirements, and a high fraction of bootstrap current is required. One of the external sources for current drive is lower hybrid current drive, which has been widely applied in many tokamaks. Here, using lower hybrid simulation code, we calculate electron distribution function, electron currents and phase velocity changes for two options of demonstration reactor at the launched lower hybrid wave frequency 5 GHz. Two plasma scenarios pertaining to two different demonstration reactor options, known as pulsed (Option 1) and steady-state (Option 2) models, have been analyzed. We perceive that electron currents have major peaks near the edge of plasma for both options but with higher efficiency for Option 1, although we have access to wider, more peripheral regions for Option 2. Regarding the electron distribution function, major perturbations are at positive velocities for both options for flux surface 16 and at negative velocities for both options for flux surface 64.

Keywords

References

  1. J. Garcia, G. Giruzzi, J.F. Artaud, V. Basiuk, J. Decker, F. Imbeaux, Y. Peysson, M. Schneider, Analysis of DEMO scenarios with the CRONOS suite of codes, Nucl. Fusion 48 (2008) 075007. https://doi.org/10.1088/0029-5515/48/7/075007
  2. R. Zagorski, R.I. Ivanova-Stanik, R. Stankiewicz, Simulations with the COREDIV code of DEMO discharges, Nucl. Fusion 53 (2013) 073030. https://doi.org/10.1088/0029-5515/53/7/073030
  3. R.A. Cairns, Lower hybrid current drive, Phys. Scripta T50 (1994) 69-74. https://doi.org/10.1088/0031-8949/1994/T50/012
  4. F.X. Soldner (The JET Team), Shear optimization experiments with current profile control on JET, Plasma Phys. Control. Fusion 39 (1997) B353. https://doi.org/10.1088/0741-3335/39/12B/027
  5. S. Ide, O. Naito, T. Oikawa, T. Fujita, T. Kondoh, M. Seki, K. Ushigusa, JT-60 Team, LHCD current profile control experiments towards steady state improved confinement on JT-60U, in: Proceedings of the 17th Conference on Fusion Energy. Yokohama (Japan), 1998, p. 567.
  6. P.T. Bonoli, M. Porkalob, Y. Takase, S.F. Knowlton, Numerical modeling of lower hybrid RF heating and current drive experiments in the Alcator C tokamak, Nucl. Fusion 28 (1988) 991. https://doi.org/10.1088/0029-5515/28/6/004
  7. D.V. Houtte, G. Martin, A. Becoulet, J. Bucalossi, G. Giruzzi, G.T. Hoang, Th. Loarer, B. Saoutic (on behalf of the Tore Supra Team), Recent fully non-inductive operation results in Tore supra with 6 min, 1 GJ plasma discharges, Nucl. Fusion 44 (2004) L11. https://doi.org/10.1088/0029-5515/44/5/L01
  8. S. Itoh, K.N. Sato, K. Nakamura, H. Zushi, M. Sakamoto, K. Hanada, E. Jotaki, K. Makino, S. Kawasaki, H. Nakashima, N. Yoshida, Recent progress on high performance steady state plasmas in the superconducting tokamak TRIAM-1M, Nucl. Fusion 39 (1999) 1257. https://doi.org/10.1088/0029-5515/39/9Y/304
  9. B. Angelini, S.V. Annibaldi, M.L. Apicella, G. Apruzzese, E. Barbato, A. Bertocchi, F. Bombarda, C. Bourdelle, A. Bruschi, P. Buratti, G. Calabro, A. Cardinali, L. Carraro, C. Castaldo, C. Centioli, R. Cesario, S. Cirant, V. Cocilovo, F. Crisanti, R. De Angelis, M. De Benedetti, F. De Marco, B. Esposito, D. Frigione, L. Gabellieri, F. Gandini, L. Garzotti, E. Giovannozzi, C. Gormezano, F. Gravanti, G. Granucci, G.T. Hoang, F. Iannone, H. Kroegler, E. Lazzaro, M. Leigheb, G. Maddaluno, G. Maffia, M. Marinucci, D. Marocco, J.R. Martin-Solis, F. Martini, M. Mattioli, G. Mazzitelli, C. Mazzotta, F. Mirizzi, G. Monari, S. Nowak, F. Orsitto, D. Pacella, L. Panaccione, M. Panella, P. Papitto, V. Pericoli- Ridolfini, L. Pieroni, S. Podda, M.E. Puiatti, G. Ravera, G. Regnoli, G.B. Righetti, F. Romanelli, M. Romanelli, F. Santini, M. Sassi, A. Saviliev, P. Scarin, A. Simonetto, P. Smeulders, E. Sternini, C. Sozzi, N. Tartoni, D. Terranova, B. Tilia, A. Tuccillo, O. Tudisco, M. Valisa, V. Vershkov, V. Vitale, G. Vlad, F. Zonca, Overview of the FTU results, Nucl. Fusion 45 (2005) S227. https://doi.org/10.1088/0029-5515/45/10/S18
  10. J. Pamela, E.R. Solano, JET EFDA Contributors, Overview of JET results, Nucl. Fusion 43 (2003) 1540. https://doi.org/10.1088/0029-5515/43/12/002
  11. S. Ide, T. Fujita, O. Naito, M. Seki, Sustainment and modification of reversed magnetic shear by LHCD on JT-60U, Plasma Phys. Control. Fusion 38 (1996) 1645. https://doi.org/10.1088/0741-3335/38/10/001
  12. J. Liu, X. Gao, L.Q. Hu, M. Asif, Z.Y. Chen, B.J. Ding, Q. Zhou, H.Q. Liu, X.Y. Jie, W. Kong, S.Y. Lin, Y.H. Ding, L. Gao, Q. Xu, The HT-7 Team, Lower hybrid current drive experiment with graphite limiters in the HT-7 superconducting tokamak, Phys. Lett. A 350 (2006) 386. https://doi.org/10.1016/j.physleta.2005.10.069
  13. M.S. Weston, Fusion: An Introduction to the Physics and Technology of Magnetic Confinement Fusion, second ed., Wiley-VCH Verlag GmbH & Co. KGaA, Berlin, 2010, pp. 211-234.
  14. E. Poli, G. Tardini, H. Zohm, E. Fable, D. Farina, L. Figini, N.B. Marushchenko, L. Porte, Electron-cyclotron current drive in DEMO plasmas, Nucl. Fusion 53 (2013) 013011. https://doi.org/10.1088/0029-5515/53/1/013011
  15. A.N. Kral, A.W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, Baltimore, 2005, pp. 1-440.
  16. N.J. Fisch, Theory of current drive in plasma, Rev. Mod. Phys. 59 (1987) 175. https://doi.org/10.1103/RevModPhys.59.175
  17. R.W. Harvey, M.G. McCoy, in: Proceedings of the IAEA Technical Committee Meeting on Advances in Simulation and Modeling of Thermonuclear Plasmas, Montreal, 1992, pp. 489-526.
  18. A.P. Smirnov, R.W. Harvey, Calculations of the current drive in DIII-D with the GENRAY ray tracing code, Bull. Am. Phys. Soc. 40 (1995) 1837.
  19. F. Imbeaux, Y. Peysson, Ray-tracing and FokkerePlanck modelling of the effect of plasma current on the propagation and absorption of lower hybrid waves, Plasma Phys. Control. Fusion 47 (2005) 2041. https://doi.org/10.1088/0741-3335/47/11/012
  20. C.F.F. Karney, N.J. Fisch, Numerical studies of current generation by radio-frequency traveling waves, Phys. Fluids 22 (1979) 1817. https://doi.org/10.1063/1.862787
  21. C.F.F. Karney, N.J. Fisch, Current in Wave-driven Plasma, Phys. Fluids 29 (1986) 180. https://doi.org/10.1063/1.865975
  22. N.J. Fisch, Confining a tokamak plasma with rf-driven currents, Phys. Rev. Letter 41 (1978) 873. https://doi.org/10.1103/PhysRevLett.41.873
  23. C.F.F. Karney, Fokker-Planck and quasi-linear codes, Comp. Phys. Rep. 4 (1986) 3-4.
  24. D.W. Ignat, E.J. Valeo, S.C. Jardin, Dynamic modeling of lower hybrid current drive, Nucl. Fusion 34 (1994) 837-851. https://doi.org/10.1088/0029-5515/34/6/I07
  25. C.F.F. Karney, N.J. Fisch, Efficiency of current drive by fast waves, Phys. Fluids 28 (1985) 116-126. https://doi.org/10.1063/1.865191
  26. P.T. Bonoli, R.W. Harvey, C. Kessel, F. Imbeaux, T. Oikawa, M. Schneider, E. Barbato, J. Decker, G. Giruzzi, C.B. Forest, S. Ide, Y. Peysson, A.E. Schmidt, A.C.C. Sips, A.P. Smirnov, J.C. Wright, Benchmarking of Lower Hybrid Current Drive Codes with Applications to ITER-relevant Regimes, PSFC/JA-06-33, Cambridge (MA), 2006.
  27. E. Barbato, F. Santini, Quasi-linear absorption of lower hybrid waves by fusion-generated alpha particles, Nucl. Fusion 31 (1991) 673. https://doi.org/10.1088/0029-5515/31/4/005
  28. S. Ceccuzzi, E. Barbato, A. Cardinal, C. Castaldo, R. Cesario, M. Marinucci, F. Mirizzi, L. Panaccione, G.L. Ravera, F. Santini, G. Schettini, A.A. Tuccillo, Lower hybrid current drive for DEMO: physics assessment and technology maturity, Fusion Sci. Technol. 64 (2013) 748. https://doi.org/10.13182/FST13-A24095
  29. A.A. Molavi Choobini, A. Naghidokht, Z. Karami, Simulation of lower hybrid current drive for DEMO, World J. Nucl. Sci. Technol. 4 (2014) 189-194. https://doi.org/10.4236/wjnst.2014.44024
  30. P.T. Bonoli, J. Parker, R. Ko, A.E. Schmidt, G. Wallace, J.C. Wright, C.L. Fiore, A.E. Hubbard, J. Irby, E. Marmar, M. Porkolab, D. Terry, S.M. Wolfe, S.J. Wukitch, The Alcator C-Mod Team, J.R. Wilson, S. Scott, E. Valeo, C.K. Phillips, R.W. Harvey, Lower hybrid current drive experiments on Alcator C-Mod: comparison with theory and simulation, Phys. Plasmas 15 (2008) 056117. https://doi.org/10.1063/1.2904569
  31. D.W. Ignant, A.J. Redd, Lower Hybrid Simulation Code Manual, Plasma Phys. Laboratory, Princeton (NJ), 2000.
  32. L. Qi, X.Y. Wang, Y. Lin, Simulation of linear and nonlinear Landau damping of lower hybrid waves, Phys. Plasmas 20 (2013) 062107. https://doi.org/10.1063/1.4812196
  33. G.T. Hoang, A. Becoulet, J. Jacquinot, J.F. Artaud, Y.S. Bae, B. Beaumont, J.H. Belo, G. Berger-By, J.P.S. Bizarro, P. Bonoli, M.H. Cho, J. Decker, L. Delpech, A. Ekedahl, J. Garcia, G. Giruzzi, M. Goniche, C.Gormezano, D. Guilhem, J.Hillairet, F. Imbeaux, F. Kazarian, C. Kessel, S.H. Kim, J.G. Kwak, J.H. Jeong, J.B. Lister, X. Litaudon, R. Magne, S. Milora, F. Mirizzi,W. Namkung, J.M. Noterdaeme, S.I. Park, R. Parker, Y. Peysson, D. Rasmussen, P.K. Sharma, M. Schneider, E. Synakowski, A. Tanga, A. Tuccillo, Y.X. Wan, A lower hybrid current drive system for ITER, Nucl. Fusion 49 (2009) 075001. https://doi.org/10.1088/0029-5515/49/7/075001

Cited by

  1. Electron Bernstein wave conversion of high-field side injected X-modes in QUEST vol.62, pp.3, 2016, https://doi.org/10.1088/1361-6587/ab6903