DOI QR코드

DOI QR Code

Reactor Vessel Water Level Estimation During Severe Accidents Using Cascaded Fuzzy Neural Networks

  • Kim, Dong Yeong (Department of Nuclear Engineering, Chosun University) ;
  • Yoo, Kwae Hwan (Department of Nuclear Engineering, Chosun University) ;
  • Choi, Geon Pil (Department of Nuclear Engineering, Chosun University) ;
  • Back, Ju Hyun (Department of Nuclear Engineering, Chosun University) ;
  • Na, Man Gyun (Department of Nuclear Engineering, Chosun University)
  • Received : 2015.07.23
  • Accepted : 2016.02.01
  • Published : 2016.06.25

Abstract

Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

Keywords

References

  1. A. Murata, K. Isoda, T. Ikeuchi, T. Matsui, F. Shiraishi, M. Oba, Classification method of severe accident condition for the development of severe accident instrumentation and monitoring system in nuclear power plant, J. Nucl. Sci. Technol. 53 (2015) 870-877.
  2. J.W. Hines, D.J. Wrest, R.E. Uhrig, Signal validation using an adaptive neural fuzzy inference system, Nucl. Technol. 119 (1997) 181-193. https://doi.org/10.13182/NT97-A35385
  3. M.G. Na, A neuro-fuzzy inference system for sensor failure detection using wavelet denoising, PCA and SPRT, J. Korean Nucl. Soc. 33 (2001) 483-497.
  4. J. Garvey, D. Garvey, R. Seibert, J.W. Hines, Validation of online monitoring techniques to nuclear plant data, Nucl. Eng. Tech. 39 (2007) 149-158. https://doi.org/10.5516/NET.2007.39.2.149
  5. E.B. Bartlett, R.E. Uhrig, Nuclear power plant diagnostics using an artificial neural network, Nucl. Technol. 97 (1992) 272-281. https://doi.org/10.13182/NT92-A34635
  6. M. Marseguerra, E. Zio, Fault diagnosis via neural networks: the Boltzmann machine, Nucl. Sci. Eng. 117 (1994) 194-200. https://doi.org/10.13182/NSE94-A28534
  7. Y.G. No, J.H. Kim, M.G. Na, D.H. Lim, K.I. Ahn, Monitoring Severe Accidents Using AI Techniques, Nucl. Eng. Technol. 44 (2012) 393-404. https://doi.org/10.5516/NET.04.2012.512
  8. M.G. Na, S.M. Lee, S.H. Shin, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Prediction of major transient scenarios for severe accidents of nuclear power plants, IEEE Trans. Nucl. Sci. 51 (2004) 313-321. https://doi.org/10.1109/TNS.2004.825090
  9. S.W. Cheon, S.H. Chang, Application of neural networks to a connectionist expert system for transient identification in nuclear power plants, Nucl. Technol. 102 (1993) 177-191. https://doi.org/10.13182/NT93-A34815
  10. Y. Bartal, J. Lin, R.E. Uhrig, Nuclear power plant transient diagnostics using artificial neural networks that allow "don'tknow" classifications, Nucl. Technol. 110 (1995) 436-449. https://doi.org/10.13182/NT95-A35112
  11. D.Y. Kim, K.H. Yoo, M.G. Na, Estimation of minimum DNBR using cascaded fuzzy neural networks, IEEE Trans. Nucl. Sci. 62 (2015) 1849-1856. https://doi.org/10.1109/TNS.2015.2457446
  12. S.H. Lee, Y.G. No, M.G. Na, K.I. Ahn, S.Y. Park, Diagnostics of loss of coolant accidents using SVC and GMDH models, IEEE Trans. Nucl. Sci. 58 (2011) 267-276. https://doi.org/10.1109/TNS.2010.2091972
  13. M.G. Na, W.S. Park, D.H. Lim, Detection and diagnostics of loss of coolant accidents using support vector machines, IEEE Trans. Nucl. Sci. 55 (2008) 628-636. https://doi.org/10.1109/TNS.2007.911136
  14. M.G. Na, S.H. Shin, D.W. Jung, S.P. Kim, J.H. Jeong, B.C. Lee, Estimation of break location and size for loss of coolant accidents using neural networks, Nucl. Eng. Des. 232 (2004) 289-300. https://doi.org/10.1016/j.nucengdes.2004.06.007
  15. A. Gofuku, A. Numoto, H. Yoshikawa, Y. Tanaka, Diagnostic techniques of a small-break loss-of-coolant accident at a pressurized water reactor plant, Nucl. Technol. 81 (1988) 313-332. https://doi.org/10.13182/NT88-A16054
  16. MAAP4 Modular Accident Analysis Program for LWR Power Plants User's Manual, prepared by Fauske & Associates, LLC for EPRI, Project RP3131-02, May 1994-June 2005.
  17. E.H. Mamdani, S. Assilian, An experiment in linguistic synthesis with a fuzzy logic controller, Int. J. Man-Machine Studies 7 (1975) 1-13. https://doi.org/10.1016/S0020-7373(75)80002-2
  18. T. Takagi, M. Sugeno, Fuzzy identification of systems and its applications to modeling and control, IEEE Trans. Systems, Man, Cybern. SMC-1 (1985) 116-132.
  19. D.Y. Kim, K.H. Yoo, J.H. Kim, M.G. Na, S. Hur, C.H. Kim, Prediction of leak flow rate using fuzzy neural networks in severe post-LOCA circumstances, IEEE Trans. Nucl. Sci. 61 (2014) 3644-3652. https://doi.org/10.1109/TNS.2014.2357583
  20. D.E. Goldberg, Genetic algorithms in search, optimization, and machine learning, Addison Wesley, Reading (MA), 1989.
  21. M. Mitchell, An introduction to genetic algorithms, MIT Press, Cambridge (MA), 1996.
  22. S.H. Park, D.S. Kim, J.H. Kim, M.G. Na, Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstances of NPPs, Nucl. Eng. Technol. 46 (2014) 373-380. https://doi.org/10.5516/NET.04.2013.087
  23. J.C. Duan, F.L. Chung, Cascaded fuzzy neural network model based on syllogistic fuzzy reasoning, IEEE Trans. Fuzzy Systems 9 (2001) 293-306. https://doi.org/10.1109/91.919250
  24. S.H. Park, J.H. Kim, K.H. Yoo, M.G. Na, Smart sensing of the RPV water level in NPP severe accidents using a GMDH algorithm, IEEE Trans. Nucl. Sci. 61 (2014) 931-938. https://doi.org/10.1109/TNS.2014.2305444

Cited by

  1. Estimation of LOCA Break Size Using Cascaded Fuzzy Neural Networks vol.49, pp.3, 2016, https://doi.org/10.1016/j.net.2016.11.001
  2. Smart support system for diagnosing severe accidents in nuclear power plants vol.50, pp.4, 2016, https://doi.org/10.1016/j.net.2018.03.007
  3. Neural-based time series forecasting of loss of coolant accidents in nuclear power plants vol.160, pp.None, 2016, https://doi.org/10.1016/j.eswa.2020.113699
  4. Artificial intelligence in nuclear industry: Chimera or solution? vol.278, pp.None, 2016, https://doi.org/10.1016/j.jclepro.2020.124022