DOI QR코드

DOI QR Code

An Intraoral Miniature X-ray Tube Based on Carbon Nanotubes for Dental Radiography

  • Kim, Hyun Jin (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Kim, Hyun Nam (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Raza, Hamid Saeed (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Park, Han Beom (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology) ;
  • Cho, Sung Oh (Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2015.11.18
  • Accepted : 2016.01.11
  • Published : 2016.06.25

Abstract

A miniature X-ray tube based on a carbon-nanotube electron emitter has been employed for the application to a dental radiography. The miniature X-ray tube has an outer diameter of 7 mm and a length of 47 mm. The miniature X-ray tube is operated in a negative high-voltage mode in which the X-ray target is electrically grounded. In addition, X-rays are generated only to the teeth directions using a collimator while X-rays generated to other directions are shielded. Hence, the X-ray tube can be safely inserted into a human mouth. Using the intra-oral X-ray tube, a dental radiography is demonstrated where the positions of an X-ray source and a sensor are reversed compared with a conventional dental radiography system. X-ray images of five neighboring teeth are obtained and, furthermore, both left and right molar images are achieved by a single X-ray shot of the miniature X-ray tube.

Keywords

References

  1. L. Li, Z. Chen, Z. Zhao, D. Wu, X-ray digital intra-oral tomosynthesis for quasi-three-dimensional imaging: system, reconstruction algorithm, and experiments, Opt. Eng. 52 (2013) 013201. https://doi.org/10.1117/1.OE.52.1.013201
  2. K. de Faria Vasconcelos, K.M. Evangelista, C.D. Rodrigues, C. Estrela, T.O. de Sousa, M.A.G. Silva, Detection of periodontal bone loss using cone beam CT and intraoral radiography, Dentomaxillofac. Radiol. 41 (2012) 64-69. https://doi.org/10.1259/dmfr/13676777
  3. N.S. Venkatesh Babu, P. Patel, Comparative evaluation of extraoral and intraoral periapical radiographic technique in children, Int. J. Sci. Stud. 2 (2015) 6-11.
  4. N. Bagis, M.E. Kolsuz, S. Kursun, K. Orhan, Comparison of intraoral radiography and cone-beam computed tomography for the detection of periodontal defects: an in vitro study, BMC Oral Health 15 (2015) 64. https://doi.org/10.1186/s12903-015-0046-2
  5. R. Kumar, N. Khambete, E. Priya, Extraoral periapical radiography: an alternative approach to intraoral periapical radiography, Imaging Sci. Dent. 41 (2011) 161-165. https://doi.org/10.5624/isd.2011.41.4.161
  6. T. Tokuyasu, M. Yamamoto, K. Okamura, K. Yoshiura, A Training Simulator for Intraoral Radiography, 2006 IEEE/RSJ International Conference on IEEE, IEEE, New York, 2006.
  7. I.A. Pretty, Caries detection and diagnosis: novel technologies, J. Dent. 34 (2006) 727-739. https://doi.org/10.1016/j.jdent.2006.06.001
  8. S.H. Cho, S.Y. Kim, S.H. An, S.M. Lim, R.N. Lee, Feasibility study of insertable miniature x-ray source for dental imaging, Korean J. Radio. 6 (2012) 39-45. https://doi.org/10.7742/jksr.2012.6.1.039
  9. S.H. Cho, D.Y. Kim, K.W. Baek, R.N. Lee, Introduction of Dental X-ray Imaging with New Conceptdintraoral X-ray Tube, The Magazine of the IEEK 48, 2011, p. 95.
  10. S.H. Heo, H.J. Kim, J.M. Ha, S.O. Cho, A vacuum-sealed miniature X-ray tube based on carbon nanotube field emitters, Nanoscale Res. Lett. 7 (2012) 258. https://doi.org/10.1186/1556-276X-7-258
  11. H.J. Kim, J.M. Ha, S.H. Heo, S.O. Cho, Small-sized flat-tip CNT emitters for miniaturized X-ray tubes, J. Nano. 2012 (2012). Article ID 854602.
  12. Y. Sakai, D. Tone, S. Nagatsu, T. Endo, S. Kita, F. Okuyama, Characterization of field emission from carbon nanofibers on a metal tip, Appl. Phys. Lett. 95 (2006) 073104.
  13. N. De Jonge, Y. Lamy, K. Schoots, T.H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube, Nature 420 (2002) 393-395. https://doi.org/10.1038/nature01233
  14. G. Zhao, J. Zhang, Q. Zhang, J. Tang, O. Zhou, L.C. Qin, Fabrication and test of single nanotube emitter as point electron source, Microsc. Microanal. 10 (2004) 550-551. https://doi.org/10.1017/S1431927604882849
  15. G. Zhao, Q. Zhang, H. Zhang, G. Yang, O. Zhou, L.C. Qina, Field emission of electrons from a Cs-doped single carbon nanotube of known chiral indices, Appl. Phys. Lett. 89 (2006) 63113. https://doi.org/10.1063/1.2335665
  16. S.H. Heo, A. Ihsan, S.O. Cho, Transmission-type microfocus x-ray tube using carbon nanotube field emitters, Appl. Phys. Lett. 90 (2007) 183109. https://doi.org/10.1063/1.2735549
  17. R.J. Parmee, C.M. Collins, W. Milne, M.T. Cole, X-ray generation using carbon nanotubes, Nano. Convergence 2 (2015) 1-27. https://doi.org/10.1186/s40580-014-0034-2
  18. E.L. Murphy, R.H. Good, Thermionic emission, field emission, and the transition region, Phys. Rev. 102 (1956) 1464. https://doi.org/10.1103/PhysRev.102.1464
  19. M.J. Rivard, S.D. Davis, L.A. DeWerd, T.W. Rusch, S. Axelrod, Calculated and measured brachytherapy dosimetry parameters in water for the Xoft Axxent X-Ray Source: an electronic brachytherapy source, Med. Phys. 33 (2006) 4020-4022. https://doi.org/10.1118/1.2357021
  20. S.H. Heo, A. Ihsan, S.O. Cho, Stable Field Emitters for a Miniature X-ray tube using carbon nanotube drop drying on a flat metal tip, Nanoscale Res. Lett. 5 (2010) 720-724. https://doi.org/10.1007/s11671-010-9537-x
  21. J.M. Ha, H.J. Kim, H.S. Raza, S.O. Cho, Highly stable carbon nanotube field emitters on small metal tips against electrical arcing, Nanoscale Res. Lett. 8 (2013) 355. https://doi.org/10.1186/1556-276X-8-355
  22. W.B. Herrmannsfeldt, G.A. Herrmannsfeldt, EGN Electron Optics Program, SLAC, Stanford, California, 1993.
  23. Los Alamos National Lab, MCNP-A General Monte Carlo NParticle Transport, version 5, 2003.
  24. G.J. Qiao, C.G. Zhang, Z.H. Jin, Thermal cyclic test of alumina/kovar joint brazed by Ni-Ti active filler, Ceram. Int. 29 (2003) 7-11. https://doi.org/10.1016/S0272-8842(02)00081-0
  25. G. Massillon, S. Chiu-Tsao, I. Domingo-Munoz, M. Chan, Energy dependence of the new Gafchromic EBT3 film: dose response curves for 50 kV, 6 and 15 MV X-ray beams, Int. J. Med. Phys. Clin. Eng. Radiat. Oncol. 1 (2012) 60-65. https://doi.org/10.4236/ijmpcero.2012.12008
  26. European Committee for Standardization: EN 12543-5, E. Brussels, 1999.

Cited by

  1. Dosimetric characterization and commissioning of a superficial electronic brachytherapy device for skin cancer treatment vol.50, pp.6, 2016, https://doi.org/10.1016/j.net.2018.04.007
  2. An update on carbon nanotube‐enabled X‐ray sources for biomedical imaging vol.10, pp.1, 2016, https://doi.org/10.1002/wnan.1475
  3. The use of a thyroid shield for intraoral anterior oblique occlusal views-a risk-based approach vol.47, pp.1, 2016, https://doi.org/10.1259/dmfr.20170140
  4. Fabrication of a compact glass-sealed x-ray tube with carbon nanotube cold cathode for high-resolution imaging vol.36, pp.2, 2016, https://doi.org/10.1116/1.5007106
  5. Amperometric nanomolar detection of dopamine using metal free carbon nanotubes synthesized by a simple chemical approach vol.5, pp.9, 2016, https://doi.org/10.1088/2053-1591/aad769
  6. Study of the Multi-Directional Intraoral X-Ray System for Clinical Diagnosis of Dental Caries vol.74, pp.5, 2019, https://doi.org/10.3938/jkps.74.522
  7. Fully 3D-printed carbon nanotube field emission electron sources with in-plane gate electrode vol.30, pp.49, 2019, https://doi.org/10.1088/1361-6528/ab3d17
  8. A feasibility study of a portable intraoperative specimen imaging X‐ray system based on carbon nanotube field emitters vol.31, pp.3, 2016, https://doi.org/10.1002/ima.22606