DOI QR코드

DOI QR Code

Reduction of Radioactive Waste from Remediation of Uranium-Contaminated Soil

  • Kim, Il-Gook (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Seung-Soo (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Gye-Nam (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Han, Gyu-Seong (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Choi, Jong-Won (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute)
  • Received : 2015.09.09
  • Accepted : 2016.01.20
  • Published : 2016.06.25

Abstract

Great amounts of solid radioactive waste (second waste) and waste solution are generated from the remediation of uranium-contaminated soil. To reduce these, we investigated washing with a less acidic solution and recycling the waste solution after removal of the dominant elements and uranium. Increasing the pH of the washing solution from 0.5 to 1.5 would be beneficial in terms of economics. A high content of calcium in the waste solution was precipitated by adding sulfuric acid. The second waste can be significantly reduced by using sorption and desorption techniques on ampholyte resin S-950 prior to the precipitation of uranium at pH 3.0.

Keywords

References

  1. S.S. Kim, G.N. Kim, U.R. Park, J.K. Moon, Development of a practical decontamination procedure for uraniumcontaminated concrete waste, J. Radioanal. Nucl. Chem. 302 (2014) 611-616. https://doi.org/10.1007/s10967-014-3178-y
  2. J.P. Kulpa, J. Hughes, Deployment of Chemical Extraction Soil Treatment on Uranium Contaminated Soil [Internet]. [cited 2015 Feb]. Available from:http://www.wmsym.org/archives/2001/54/54-5.pdf.
  3. S.D. Ebbs, W.A. Norvell, L.V. Kochian, The effect of acidification and chelating agents on the solubilization of uranium from contaminated soil, J. Environ. Qual. 27 (1998) 1486-1494.
  4. IAEA, Clearance Levels for Radionuclides in Solid Materials: Application of Exemption Principles, IAEA-TECDOC-855, 1996.
  5. G.N. Kim, Y.H. Jung, J.K. Lee, J.K. Moon, C.H. Jung, U.S. Chung, Development of electrokinetic-flushing equipment for remediation of soil contaminated with radionuclides, J. Korean Radio. Waste Soc. 6 (2008) 1-9.
  6. G.N. Kim, S.S. Kim, H.M. Park, W.S. Kim, J.K. Moon, J.H. Hyeon, Development of complex electrokinetic decontamination method for soil contaminated with uranium, Electrochim. Acta 86 (2012) 49-56. https://doi.org/10.1016/j.electacta.2012.06.041
  7. G.N. Kim, W.K. Choi, C.H. Bung, J.K. Moon, Development of a washing system for soil contaminated with radionuclides around Triga reactor, J. Ind. Eng. Chem. 13 (2007) 406-413.
  8. G.N. Kim, D.B. Shon, H.M. Park, K.W. Lee, U.S. Chung, Development of pilot-scale electrokinetic remediation technology for uranium removal, Sep. Purif. Technol. 80 (2011) 67-72. https://doi.org/10.1016/j.seppur.2011.04.009
  9. G. Blanchard, M. Maunaye, G. Martin, Removal of heavy metals from waters by means of natural zeolites, Water Res. 18 (1984) 1501-1507. https://doi.org/10.1016/0043-1354(84)90124-6
  10. D. Das, M.K. Sureshkumar, S. Koley, N. Mithal, C.G.S. Pillai, Sorption of uranium on magnetite nanoparticles, J. Radioanal. Nucl. Chem. 285 (2010) 447-454. https://doi.org/10.1007/s10967-010-0627-0
  11. I. Adsley, A.L. Nichols, J. Toole, Decay of $^{234}Th$ and daughter $^{234m}Pa$ in secular equilibrium: resolution of observed anomalies, DOE/CPR2/41/1/219, 1996.
  12. M. Gavrilescu, L.V. Pavel, I. Cretescu, Characterization and remediation of soils contaminated with uranium, J. Hazard Mater. 163 (2009) 475-510. https://doi.org/10.1016/j.jhazmat.2008.07.103
  13. N.A. Nekrasova, S.P. Kudryavtseva, V.V. Milyutin, E.A. Chuveleva, L.A. Firsova, C.M. Gelis, Sorption of uranium from nitric acid solutions on various ion exchangers, Radiochemistry 50 (2008) 183-185. https://doi.org/10.1134/S1066362208020173
  14. V.N. Rychkov, L.V. Norkina, Uranium sorption from nitric acid solutions with cation exchangers and polyampholytes, Radiochemistry 49 (2007) 504-506. https://doi.org/10.1134/S1066362207050104
  15. A. Rahmati, A. Ghaemi, M. Samadfam, Kinetic and thermodynamic studies of uranium(VI) adsorption using Amberlite IRA-910 resin, Ann. Nucl. Energy 39 (2012) 42-48. https://doi.org/10.1016/j.anucene.2011.09.006
  16. I. Casas, J. Pablo, J. Gimenez, M.E. Torrero, J. Bruno, E. Cera, R.J. Finch, R.C. Ewing, The role of pe, pH and carbonate on the solubility of $UO_2$ and uraninite under nominally reducing conditions, Geochim, Cosmochim. Acta 62 (1998) 2223-2231. https://doi.org/10.1016/S0016-7037(98)00140-9
  17. Calcium Sulfate [Internet]. [cited 2015 Dec]. Available from:http://en.wikipedia.org/wiki/calcium-sulfate.
  18. K.W. Kim, Y.H. Kim, S.Y. Lee, J.W. Lee, S.J. Kim, E.H. Lee, J.S. Kim, K.S. Song, Precipitation characteristics of uranyl ions at different pHs depending on the presence of carbonate ions and hydrogen peroxide, Environ. Sci. Technol. 43 (2009) 2355-2361. https://doi.org/10.1021/es802951b
  19. A. Burneau, M. Tazi, G. Bouzat, Raman spectroscopic determination of equilibrium constants of uranyl sulphate complexes in aqueous solutions, Talanta 39 (1992) 743-748. https://doi.org/10.1016/0039-9140(92)80089-V
  20. A.C.Q. Ladeira, C.R. Goncalves, Influence of anionic species on uranium separation from acid mine water using strong base resins, J. Hazard Mater. 148 (2007) 499-504. https://doi.org/10.1016/j.jhazmat.2007.03.003

Cited by

  1. Differentiated influences of risk perceptions on nuclear power acceptance according to acceptance targets: Evidence from Korea vol.49, pp.5, 2016, https://doi.org/10.1016/j.net.2017.04.005
  2. Improving Cobalt Phytoextraction by Astragalus Sinicus L. Grown in Co-Contaminated Soils Using Biodegradable Chelators vol.28, pp.5, 2016, https://doi.org/10.1080/15320383.2019.1613957
  3. Effect of biodegradable chelators on induced phytoextraction of uranium- and cadmium- contaminated soil by Zebrina pendula Schnizl vol.9, pp.1, 2016, https://doi.org/10.1038/s41598-019-56262-9
  4. Electrokinetic remediation of uranium(VI)-contaminated red soil using composite electrolyte of citric acid and ferric chloride vol.27, pp.4, 2020, https://doi.org/10.1007/s11356-019-06990-2
  5. Uranium Decontamination from Waste Soils by Chlorination with ZrCl4 in LiCl-KCl Eutectic Salt vol.2021, pp.None, 2016, https://doi.org/10.1155/2021/9956111