DOI QR코드

DOI QR Code

Immuno-stimulatory Activities of a High Molecular Weight Fraction from Cynanchum wilfordii Radix Obtained by Ultrafiltration

한외거르기(Ultrafiltration)에 의하여 분리된 백수오 고분자 분획물의 면역증진 활성

  • Jang, Mi (Traditional Food Research Center, Korea Food Research Institute) ;
  • Lim, Tae-Gyu (Traditional Food Research Center, Korea Food Research Institute) ;
  • Hong, Hee-Do (Traditional Food Research Center, Korea Food Research Institute) ;
  • Rhee, Young Kyoung (Traditional Food Research Center, Korea Food Research Institute) ;
  • Kim, Kyung-Tack (Traditional Food Research Center, Korea Food Research Institute) ;
  • Lee, Eunjung (Traditional Food Research Center, Korea Food Research Institute) ;
  • Lee, Jeong Hoon (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Lee, Yun Ji (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Kim, Yeon Bok (Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, RDA) ;
  • Cho, Chang-Won (Traditional Food Research Center, Korea Food Research Institute)
  • 장미 (한국식품연구원 전통식품연구센터) ;
  • 임태규 (한국식품연구원 전통식품연구센터) ;
  • 홍희도 (한국식품연구원 전통식품연구센터) ;
  • 이영경 (한국식품연구원 전통식품연구센터) ;
  • 김경탁 (한국식품연구원 전통식품연구센터) ;
  • 이은정 (한국식품연구원 전통식품연구센터) ;
  • 이정훈 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 이윤지 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 김연복 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 조장원 (한국식품연구원 전통식품연구센터)
  • Received : 2016.02.23
  • Accepted : 2016.04.04
  • Published : 2016.06.30

Abstract

The purpose of this study was to investigate the immuno-stimulatory activity of the high-molecular-weight fraction (HMWF) of Cynanchum wilfordii (CW) extracts obtained by ultrafiltration in murine macrophage RAW 264.7 cells and to assess its immuno-stimulatory effect in mice. Ultrafiltration was performed with polyethersulfone membranes (30 kDa cutoff) in a cross-flow filtration system to obtain the HMWF of CW. The results showed that the HMWF increased the production of various cytokines such as tumor necrosis factor-${\alpha}$, interleukin-6, and nitric oxide in dose-ependent manners. In addition, HMWF treatment increased the relative spleen weight as well as splenocyte proliferation induced by concanavalin A or bacterial lipopolysaccharide in mice. Natural killer (NK) cell activity in the HMWF-treated group was significantly increased compared to that in the control group. These results suggest that the HMWF of CW can support the immune system through secretion of macrophage cytokines, thereby enhancing NK cell activity and murine splenocyte proliferation.

백수오의 국내 재배활성화와 함께 농가소득을 높이기 위한 기능성 식품소재로서의 우수성을 산업적으로 응용하고자 백수오 추출물의 면역증진 활성을 평가하였다. 낮은 온도에서 액체상태의 추출물을 효과적으로 농축하고 정제하기 위하여 비열처리 공정인 한외거르기를 통해 분자량(MWCO)이 30 kDa인 여과막을 이용하여 고분자 분획물(CWUF>30) 및 저분자 분획물(CWUF<30)을 얻었으며 이를 큰포식세포 활성화를 통한 면역 증진 효과를 알아보기 위해 RAW 264.7 세포를 이용하여 면역활성의 지표가 되는 산화질소(II) 생성량 및 사이토카인인 TNF-${\alpha}$, 인터루킨-6의 생성량을 측정한 결과, 정상대조군(CON)에 비해 CWUF>30을 처리하였을 때 농도 의존적으로 유의하게 증가하였다. 세포실험을 통해 면역증강활성이 높은 CWUF>30은 정상동물모델에서 면역기관인 비장 및 흉선의 무게를 증가시켰고 비장세포 유래 림프구 증식도 유의하게 증가시켰다. 이는 CWUF>30의 투여가 비장세포를 증식시키는 mitogen 활성이 있음을 보여주며 외부의 항원에 노출 시 항원에 대한 면역반응을 유도하는 면역세포의 수를 증가시켜 항원에 대한 효과적인 방어에 도움을 줄 것으로 보여진다. 또한 CWUF>30을 투여한 마우스 비장세포(splenocyte)의 Yac-1 세포 살해 정도를 측정한 결과, 200 mg/kg BW의 농도로 CWUF>30을 투여한 마우스의 비장세포는 정상대조군(CON)에 비하여 effector 세포와 target 세포의 비율이 10:1에서 유의적으로 증가하였으며 이는 양성대조군(PC)과 유사한 높은 활성을 보이는 것을 확인 할 수 있었다. 이와 같은 결과를 통해 백수오 고분자 분획물(CWUF>30)이 강력한 면역활성 증진효능을 갖고 있으며 각종 바이러스 등 외부 항원들에 대응하여 초기 면역세포를 자극하고 면역매개물질을 생성함으로써 인체의 비특이적 면역반응을 증가시키는데 중요한 역할을 할 수 있을 것으로 기대된다.

Keywords

References

  1. Ministry of Food and Drug Safety. The Korean Herbal Pharmacopoeia. Available from: http://www.mfds.go.kr/herbmed/index.do?nMenuCode=7. Accessed Jan. 29, 2016.
  2. Kim MJ, Song BH, Nam SY, Kim IJ, Lee CH, Yun T. Effects of nonsupporting methods on growth and yield of Cynanchum auriculatum Royle ex Wight. Korean J. Medicinal Crop Sci. 13: 268-272 (2005)
  3. Hwang IS, Yoo JH, Seong ES, Lee JG, Kim HY, Kim NJ, Lim JD, Ham JK, Ahn YS, Kim NY, Yu CY. The Effect of temperature and seed soaking on germination in Cynanchum wilfordii (Maxim.) Hemsl. Korean J. Medicinal Crop Sci. 20: 136-139 (2012) https://doi.org/10.7783/KJMCS.2012.20.2.136
  4. Lee JH, Kweon KT. Determination of harvest time and nominal origin from Cynanchi wilfordii Radix. J. Korean Oriental Med. 33: 160-168 (2012)
  5. Lee DW, Kim CH, Lee DU. Effect of culture conditions on the biosynthesis of gagaminine, a potent antioxidant from the roots of Cynanchum wilfordii. Biol. Pharm. Bull. 24: 1451-1453 (2001) https://doi.org/10.1248/bpb.24.1451
  6. Yoon DW, Cho SM, Kim SJ, Kim JH, Kim DS, Lee SH, Yun CH, Shin C. Effects of Cynanchum wilfordii Hemsley extract on the sleep-wake architectures in rats. Sleep Med. Res. 2: 16-20 (2011) https://doi.org/10.17241/smr.2011.2.1.16
  7. Zenk MH, el-Shagi H, Schulte U. Anthraquinone production by cell suspension cultures of Morinda citrifolia. Planta Med. 28: 79-101 (1975) https://doi.org/10.1055/s-0028-1104768
  8. Kim SN, Li YC, Xu HD, Yi DG, Kim MS, Lee SP, Yi KT, Lee JK, Kim JS, Kwon MS, Chang PS, Kwak BY. Phytoestrogenic effects of combined plant extracts on the change of bone metabolism of OVX rats. Korean J. Food Sci. Technol. 40: 316-320 (2008)
  9. Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res. 17: 323-331 (1997)
  10. Kim KH, Lee YS, Jung IS, Park SY, Chung HY, Lee IR, Yun YS. Acidic polysaccharide from Panax ginseng, ginsan, induces Th1 cell and macrophage cytokines and generates LAK cells in synergy with rIL-2. Planta Med. 64: 110-115 (1998) https://doi.org/10.1055/s-2006-957385
  11. Shin JY, Song JY, Yun YS, Yang HO, Rhee DK, Pyo S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharm. Immunot. 24: 469-482 (2002) https://doi.org/10.1081/IPH-120014730
  12. Song JY, Han SK, Son EH, Pyo SN, Yun YS, Yi SY. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int. Immunophrmacol. 2: 857-865 (2002) https://doi.org/10.1016/S1567-5769(01)00211-9
  13. Cho SH, Yang KM, Bae BS, In SA, Yu RN. Effect of sea tangle intake on cytokine production in macrophage from normal and diabetic mice. J. Korean Soc. Food Sci. Nutr. 27: 952-959 (1998)
  14. Cheng GC, Lee JY, Kim DC, Suh SO, Hwang WI. Inhibitory effects of Salvia miltiorhiza extract on growth of some cancer cells. J. Korean Soc. Food Sci. Nutr. 29: 726-731 (2000)
  15. Ji WD, Jeong HC, Lee SJ, Chun YG. Antimicrobial activity and distilled components of garlic and ginger. J. Agr. Chem. Biotechnol. 40: 514-518 (1997)
  16. Abo T, Kawamura T, Watanabe H. Immunologic states of autoimmune diseases. Immunol. Res. 33: 23-34 (2005) https://doi.org/10.1385/IR:33:1:023
  17. Hibbs JB Jr, Taintor RR, Vavrin I, Rachlin EM. Nitric oxide: A cytotoxic activated macrophage effector molecule. Biochem. Bioph. Res. Co. 157: 87-94 (1998)
  18. Nathan CF. Secretory products of macrophages. J. Clin. Invest. 79: 319-326 (1987) https://doi.org/10.1172/JCI112815
  19. Herberman RB, Ortaldo JR. Natural killer cell: Their roles in defenses against disease. Science 214: 24-30 (1981) https://doi.org/10.1126/science.7025208
  20. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugar and related substances. Anal. Chem. 28: 350-356 (1956) https://doi.org/10.1021/ac60111a017
  21. Bitter T, Muir HM. A modified uronic acid carbazole reaction. Anal. Biochem. 4: 330-334 (1962) https://doi.org/10.1016/0003-2697(62)90095-7
  22. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254 (1976) https://doi.org/10.1016/0003-2697(76)90527-3
  23. Kim HS, Kang JS. Preparation and characteristics of bread by medicinal herb composites with immunostimulating activity. J. Korean Soc. Food Sci. Nutr. 37: 109-116 (2008) https://doi.org/10.3746/jkfn.2008.37.1.109
  24. Kim JJ, Lee SW, Park KW, Seo KI, Yee ST. Effect of Flammulina velutipes extracts cultivated with oriental herbal plants on the activation of immune cells. J. Life Sci. 22: 828-836 (2012) https://doi.org/10.5352/JLS.2012.22.6.828
  25. Cho CW, Han CJ, Rhee YK, Lee YC, Shin KS, Shin JS, Lee KT, Hong HD. Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression. Int. J. Biol. Macromol. 72: 519-525 (2015) https://doi.org/10.1016/j.ijbiomac.2014.09.010
  26. Yu AR, Park HY, Kim YS, Ha SK, Hong HD, Choi HD. Immuno-enhancing effect of seed extracts on a RAW 264.7 macrophage cell line. J. Korean Soc. Food Sci. Nutr. 41: 1671-1676 (2012) https://doi.org/10.3746/jkfn.2012.41.12.1671
  27. Cha JH, Kim YS, Lee EM. Effects of Prunellae spica water extract on immune response in macrophage cells. J. Korean Obstet. Gynecol. 23: 91-100 (2010)
  28. Kim YS, Kang KS, Kim SI. Study on antitumor and immunomodulating activities of polysaccharide fractions from Panax ginseng: Comparison of effects of neutral and acidic polysaccharide fraction. Arch. Pharm. Res. 13: 330-337 (1990) https://doi.org/10.1007/BF02858168
  29. Kim YS, Kang KS, Kim SI. Effects of ginseng components on immunotoxicity of cyclophosphamide. J. Ginseng Sci. 15: 13-20 (1991)
  30. Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer Res. 17: 323-331 (1997)
  31. Park KM, Jeong TC, Kim YS, Shin HJ, Nam KY, Park JD. Immunomodulatory effect of acidic polysaccharide fraction from Korean red ginseng (Panax ginseng). Nat. Prod. Sci. 6: 31-35 (2000)
  32. Nam S, YK Rhee, Hong HD, Lee YC, YC Kim, Shin KS, Cho CW. Immuno-modulatory activity of the crude polysaccharide from wild ginseng adventitious root. Korean J. Food Nutr. 25: 755-761 (2012) https://doi.org/10.9799/ksfan.2012.25.4.755
  33. Gerberick GF, Cruse LW, Ryan CA. Local lymph node assay: Differentiating allergic and irritant responses using flow cytometry. Eur. J. Med. Res. 19: 48-55 (1999)
  34. Sikorski EE, Gerberick GF, Ryan CA, Miller CM, Ridder GM. Phenotypic analysis of lymphocyte subpopulations in lymph nodes draining the ear following exposure to contact allergens and irritants. Fund. Appl. Toxicol. 34:25-35 (1996) https://doi.org/10.1006/faat.1996.0172
  35. Suda A, Yamashita M, Tabei M, Taguchi K, Vohr HW, Tsutsui N, Suzuki R, Kikuchi K, Sakaguchi K, Mochizuki K, Nakamura K. Local lymph node assay with non-radioisotope alternative endpoints. J. Toxicol. Sci. 27:204-218 (2002)
  36. Lee YS, Lee GH, Kwon YK, Park JH, Shin SW. Immunomodulatory effect of aqueous extracted Zingiberis rhizoma on cyclophosphamide- induced immune suppression. J. Physiol. Pathol. Korean Med. 21: 485-490 (2007)
  37. Whiteside TL, Herberman RB. The role of natural killer cells in immune surveillance of cancer. Curr. Opin. Immunol. 7: 704-710 (1995) https://doi.org/10.1016/0952-7915(95)80080-8
  38. Lanier LL. NK cell receptors. Annu. Rev. Immunol. 16: 359-393 (1998) https://doi.org/10.1146/annurev.immunol.16.1.359
  39. See DM, Broumand N, Sahl L, Tilles JG. In vitro effects of echinacea and ginseng on natural killer and antibody-dependent cell cytotoxicity in healthy subjects and chronic fatigue syndrome or acquired immunodeficiency syndrome patients. Immunopharmacology 35: 229-235 (1997) https://doi.org/10.1016/S0162-3109(96)00125-7