DOI QR코드

DOI QR Code

Hepatoprotcetive Effects of Oyster (Crassostrea gigas) Extract in a Rat Model of Alcohol-Induced Oxidative Stress

알코올로 유도된 간 손상 동물모델에서 굴 추출물의 간 보호 효과

  • Received : 2016.01.26
  • Accepted : 2016.05.23
  • Published : 2016.06.30

Abstract

This study was conducted to investigate the protective effects of water extract from Crassostrea gigas (CGW) against ethanol-induced hepatic toxicity in rats. Seventy-two male Wistar rats (6-week-old) were divided into six groups of 12 animals each: control group (1 mL saline/d), ethanol-treated group, positive control group (ethanol+Hovenia dulcis Thunb extract), CGWL group (ethanol+low dosage of CGW), CGWM group (ethanol+medium dosage of CGW), and CGWH group (ethanol+high dosage of CGW). All groups except the control group received ethanol (40% ethanol 5 g/kg) orally. CGW administration with ethanol resulted in prevention of ethanol-induced hepatotoxicity by increasing levels of serum alanine aminotransferase and ${\gamma}-glutamyltransferase$. CGW supplementation significantly reduced formation of malonaldehyde and inhibited reduction of hepatic glutathione and peroxidase levels, as compared with the ethanol-administration group. Further, CGW suppressed expression of CYP2E1, which was elevated by ethanol administration. Consequently, our results indicate that Crassostrea gigas may exert hepatoprotective effects against alcohol-induced hepatocyte injury by intensifying the anti-oxidative defense system.

본 연구는 에탄올로 유도한 알코올성 지방간 동물모델에서 굴 열수 추출물의 알코올성 간 손상 개선 효과를 평가하기 위해 수행되었다. 6주령의 SD rat(male)을 총 6개 군으로 분리하였으며, 양성대조군으로 헛개나무 열매 추출물(500 mg/kg b.w.)을 처리하였다. 6주 동안 하루 간격으로 CGW를 50, 200, 800 mg/kg b.w. 농도로 경구 투여하였으며, control군을 제외한 나머지군은 40% ethanol 5 g/kg b.w.를 6주간 투여하였다. 43일째 실험동물을 희생시켜 혈액 분석 및 간 조직의 항산화 효과 분석을 통해 에탄올로 유도한 동물모델에서 굴 열수 추출물의 알코올성 간 손상 회복 효과를 확인한 결과, 에탄올에 의해 증가한 ALT와 ${\gamma}-GT$의 수준이 CGW를 투여함으로써 유의적으로 감소하였으며, 항산화효소 활성이 증가한 것을 확인할 수 있었다. 에탄올에 의해 손상된 간 조직의 손상 정도를 평가하기 위해 수행한 조직병리학적 검사에서는 에탄올의 투여로 증가한 지방변성 비율 및 간세포 수와 같은 인자들이 굴 열수 추출물의 투여로 유의적으로 회복된 것을 확인하였다. 또한, 에탄올에 의해 증가한 CYP2E1의 발현이 굴 열수 추출물의 투여로 유의적으로 감소하였다. 이러한 연구 결과들로 보았을 때 본 실험에서 굴 추출물의 다당류 및 폴리페놀의 항산화 작용으로 알코올로 유도된 간 손상을 억제할 수 있음을 예상할 수도 있지만, 이후 추가적인 연구로 다른 활성성분의 규명과 관련 활성 기작을 탐구하고자 한다. 본 연구진은 이와 같은 결과를 바탕으로 굴 열수 추출물이 알코올성 지방간 동물모델에서 항산화 방어시스템의 강화를 통해 간 손상을 회복시킴을 확인할 수 있었고, 이러한 연구 성과들로 굴 추출물이 알코올성 간 손상 개선에 있어 효과적인 대안으로서 더욱 더 많은 분야에서 연구되기를 바라는 바이다.

Keywords

References

  1. Altamirano J, Bataller R. 2011. Alcoholic liver disease: pathogenesis and new targets for therapy. Nat Rev Gastroenterol Hepatol 8: 491-501. https://doi.org/10.1038/nrgastro.2011.134
  2. Nagata K, Suzuki H, Sakaguchi S. 2007. Common pathogenic mechanism in development progression of liver injury caused by non-alcoholic or alcoholic steatohepatitis. J Toxicol Sci 32: 453-568. https://doi.org/10.2131/jts.32.453
  3. Ceni E, Mello T, Galli A. 2004. Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol 20: 17756-17772.
  4. Wu YS, Salmela KS, Lieber CS. 1998. Microsomal acetaldehyde oxidation is negligible in the presence of ethanol. Alcohol Clin Exp Res 22: 1165-1169. https://doi.org/10.1111/j.1530-0277.1998.tb03717.x
  5. Cederbaum AI. 2006. CYP2E1 - biochemical and toxicological aspects and role in alcohol-induced liver injury. Mt Sinai J Med 73: 657-672.
  6. Jones DP. 2006. Redefining oxidative stress. Antioxid Redox Signal 8: 1865-1879. https://doi.org/10.1089/ars.2006.8.1865
  7. Lieber CS. 1994. Alcohol and the liver. Gastroenterology 106: 1085-1105. https://doi.org/10.1016/0016-5085(94)90772-2
  8. Ha HL, Shin HJ, Feitelson MA, Yu DY. 2010. Oxidative stress and antioxidants in hepatic pathogenesis. World J Gastroenterol 16: 6035-6043. https://doi.org/10.3748/wjg.v16.i48.6035
  9. Yamaura K, Takahashi KG, Suzuki T. 2008. Identification and tissue expression analysis of C-type lectin and galectin in the Pacific oyster, Crassostrea gigas. Comp Biochem Physiol B Biochem Mol Biol 149: 168-175. https://doi.org/10.1016/j.cbpb.2007.09.004
  10. Shi X, Ma H, Tong C, Qu M, Jin Q, Li W. 2015. Hepatoprotective effect of a polysaccharide from Crassostrea gigas on acute and chronic models of liver injury. Int J Biol Macromol 78: 142-148. https://doi.org/10.1016/j.ijbiomac.2015.03.056
  11. Gaté L, Paul J, Ba GN, Tew KD, Tapiero H. 1999. Oxidative stress induced in pathologies: the role of antioxidants. Biomed Pharmacother 53: 169-180. https://doi.org/10.1016/S0753-3322(99)80086-9
  12. Gate L, Schultz M, Walsh E, Dhalluin S, Nguyen Ba G, Tapiero H, Tew KD. 1998. Impact of dietary supplement of Crassostrea gigas extract (JCOE) on glutathione levels and glutathione S-transferase activity in rat tissues. In Vivo 12: 299-303.
  13. Akerboom TP, Sies H. 1981. Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods Enzymol 77: 373-382. https://doi.org/10.1016/S0076-6879(81)77050-2
  14. McCord JM, Fridovich I. 1969. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244: 6049-6055.
  15. Paglia DE, Valentine WN. 1967. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70: 158-169.
  16. Draper HH, Hadley M. 1990. Malondialdehyde determination as index of lipid peroxidation. Methods Enzymol 186: 421-431. https://doi.org/10.1016/0076-6879(90)86135-I
  17. Jung YM, Lee SH, Lee DS, You MJ, Chung IK, Cheon WH, Kwon YS, Lee YJ, Ku SK. 2011. Fermented garlic protects diabetic, obese mice when fed a high-fat diet by antioxidant effects. Nutr Res 31: 387-396. https://doi.org/10.1016/j.nutres.2011.04.005
  18. Han JY, Lee S, Yang JH, Kim S, Sim J, Kim MG, Jeong TC, Ku SK, Cho IJ, Ki SH. 2015. Korean Red Ginseng attenuates ethanol-induced steatosis and oxidative stress via AMPK/Sirt1 activation. J Ginseng Res 39: 105-115. https://doi.org/10.1016/j.jgr.2014.09.001
  19. Bailey SM, Cunningham CC. 2002. Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radical Biol Med 32: 11-16. https://doi.org/10.1016/S0891-5849(01)00769-9
  20. Whitfield JB. 2001. Gamma glutamyl transferase. Crit Rev Clin Lab Sci 38: 263-355. https://doi.org/10.1080/20014091084227
  21. Donohue TM Jr. 2007. Alcohol-induced steatosis in liver cells. World J Gastroenterol 13: 4974-4978. https://doi.org/10.3748/wjg.v13.i37.4974
  22. You M, Crabb DW. 2004. Molecular mechanisms of alcoholic fatty liver: role of sterol regulatory element-binding proteins. Alcohol 34: 39-43. https://doi.org/10.1016/j.alcohol.2004.07.004
  23. Chen YH, Yang CM, Chang SP, Hu ML. 2009. C/EBP beta and C/EBP delta expression is elevated in the early phase of ethanol-induced hepatosteatosis in mice. Acta Pharmacol Sin 30: 1138-1143. https://doi.org/10.1038/aps.2009.109
  24. Han D, Hanawa N, Saberi B, Kaplowitz N. 2006. Mechanisms of liver injury. III. Role of glutathione redox status in liver injury. Am J Physiol Gastrointest Liver Physiol 291: G1-G7. https://doi.org/10.1152/ajpgi.00001.2006
  25. Lieber CS. 1997. Cytochrome P-4502E1: its physiological and pathological role. Physiol Rev 77: 512-544.
  26. Gorsky LD, Koop DR, Coon MJ. 1984. On the stoichiometry of the oxidase and monooxygenase reactions catalyzed by liver microsomal cytochrome P-450. Products of oxygen reduction. J Biol Chem 259: 6812-6817.

Cited by

  1. 발효굴추출물의 경구 섭취가 소아 신장 성장에 미치는 효과 및 안전성 평가를 위한 무작위배정, 이중눈가림, 위약 대조 인체적용시험: 인체적용시험 프로토콜 vol.33, pp.4, 2016, https://doi.org/10.7778/jpkm.2019.33.4.37
  2. Protective Effects of the Methanol Extract from Calyx of Diospyros kaki on Alcohol-Induced Liver Injury vol.50, pp.4, 2016, https://doi.org/10.3746/jkfn.2021.50.4.339