DOI QR코드

DOI QR Code

Application of High-precision Accelerometer Made in Korea to Health Monitoring of Civil Infrastructures

국산 고정밀 가속도계의 건설 구조물 적용성 평가

  • Kwon, Nam-Yeol (R&D Center, Poongsan FNS) ;
  • Kang, Doo-Young (R&D Center, Poongsan FNS) ;
  • Sohn, Hoon (Department of Civil and Environmetal Engineering, Korea Advanced Institute of Science and Technology)
  • 권남열 (풍산 FNS R&D 사업실) ;
  • 강두영 (풍산 FNS R&D 사업실) ;
  • 손훈 (한국과학기술원 건설 및 환경공학과)
  • Received : 2016.05.04
  • Accepted : 2016.05.18
  • Published : 2016.06.30

Abstract

A high-precision force-feedback 3-axes accelerometer developed in Korea has been investigated and studied for the verification of feasibility in the computational analysis and health monitoring of civil infrastructures. Through a series of experiment, the nonlinearity, bandwidth, low-frequency signal measurement accuracy and bias characteristics of the accelerometer has been thoroughly compared to those of two accelerometers produced by two market leaders in domestic and global accelerometer market. The experiment results shows that the overall measurement performance of the accelerometer has superiority over the performance of the two accelerometers from global market leader companies. Especially, the accelerometer shows a better low-frequency signal measurement accuracy and constant bias characteristic, which are mostly required in the computational analysis and the long-term health monitoring of large-scale civil infrastructures.

본 논문에서는 풍산 FNS에서 개발한 force-feedback형 고정밀 국산 3축 가속도계의 성능을 실험적으로 평가하고, 건설구조물 전산구조해석 및 유지관리용 건전성 모니터링에의 적용성을 논한다. 레이트 테이블 및 가진기를 통해 다양한 형태로 가진실험을 수행함으로써 국산 가속도계의 비선형성, 대역폭, 저주파 신호계측 성능, 바이어스 특성을 검증하고, 국내 가속도계 시장의 대부분을 차지하고 있는 해외 업체들의 대표적 가속도계와 성능을 비교 평가하여 국산 가속도계의 적용성과 시장진입 가능성을 평가하였다. 실험분석 결과 국산 가속도계는 실험으로 평가한 모든 항목에서 실험에 사용된 수입 가속도계보다 좋은 성능을 보였다. 특히 건설 구조물 계측에 필수적인 저주파 대역 계측성능은 수입 가속도계의 성능을 능가하였으며, 바이어스도 상수 특성을 가장 잘 유지하는 것으로 나타나 향후 실험기반 구조해석 및 구조물 장기 건전도 모니터링에 좋은 대안이 될 것으로 평가된다.

Keywords

References

  1. A study on Intelligent Bridge Diagnosis System and Evaluation Method (2012) Annual Research Report, Korea Expressway Corporation.
  2. Bae, I.H., Ha, G.H. (2002) Structural Behavior on Self-Anchored Suspension Bridge with Three Dimensional Main Cable Using The Bridge Health Monitoring System, Proc. Annual Conference of Korean Society of Civil Engineers, pp.672-675.
  3. Castellini, P., Martarelli, P., Tomasini, E.P. (2006) Laser Doppler Vibrometry: Development of Advanced Solutions Answering to Technology's Needs, Mech. Sys. & Signal Proc., 20, pp.1265-1285. https://doi.org/10.1016/j.ymssp.2005.11.015
  4. Chau, K.H.L, Lewis, S.R., Zhao, Y., Howe, R.T., Bart, S.F. (1996) An Integrated Force-balanced Capacitive Accelerometer for Low-g Application, Sens. & Actuators A:Physical, 54, pp.472-476. https://doi.org/10.1016/S0924-4247(97)80006-4
  5. Johansmann, M., Siegmund, G., Pineda, M. (2005) Targeting the Limits of Laser Doppler Vibrometry, Proc. Int. Disk Equipment and Materials Association, Tokyo, Japan, pp.1-12.
  6. Moore, D.M. (1999) Effect of Baseline Corrections on Response Spectra for Two Recordings of the 1999 Chi-Chi, Taiwan, earthquake, U.S. Geological Survey Open-File Report 99-545, 1999.
  7. Moore, D.M. (2001) Effect of Baseline Corrections of Displacement and Response Spectra for Several Recordings of the 1999 Chi-Chi, Taiwan, Earthquake, Bulletin of the Seismological Society of America, 91 pp.1199-1211.
  8. Park, J.C., Park, C.M., Kim, B.H., Lee, I.K., Jo, B.W. (2006) Dynamic Characteristics of Seohae Cable-stayed Bridge Based on Long-term Measurements, J. Earthq. Eng. Soc. Korea, 10, pp.115-123. https://doi.org/10.5000/EESK.2006.10.6.115
  9. Ren, W.X., Peng, X.L., Lin, Y.Q. (2005) Experimental and Analytical Studies on Dynamic Characteristics of a Large Span Cable-stayed Bridge, Eng. Struct., 27, 535-548. https://doi.org/10.1016/j.engstruct.2004.11.013
  10. Siringoringo, D.M., Fujino, Y. (2009) Noncontact Operational Modal Analysis of Structural Members by Laser Doppler Vibrometer, Computer-Aided Civil & Infrastruct. Eng., 24, pp.249-265. https://doi.org/10.1111/j.1467-8667.2008.00585.x
  11. Stiros, S. (2008) Errors in Velocities and Displacements deduced from Accelerographs: An Approach Based on the Theory of Error Propagation, Soil Dyn. & Earthq. Eng., 28, pp.415-420. https://doi.org/10.1016/j.soildyn.2007.07.004
  12. Kim, J., Kim, K., Sohn, H. (2014) Autonomous Dynamic Displacement Estimation from Data Fusion of Acceleration and Intermittent Displacement Measurements, Mech. Syst. & Signal Proc., 42, pp.194-205. https://doi.org/10.1016/j.ymssp.2013.09.014
  13. Kim, K., Choi, J., Koo, G, Sohn, H. (2016) Dynamic Displacement Estimation by Fusing High-sampling Rate Acceleration and Low-sampling Displacement Measurement using Two-stage Kalman Estimator, Smart Struct. & Syst., 17, pp.647-667. https://doi.org/10.12989/sss.2016.17.4.647

Cited by

  1. Two Stage Kalman Filter based Dynamic Displacement Measurement System for Civil Infrastructures vol.31, pp.3, 2018, https://doi.org/10.7734/COSEIK.2018.31.3.141