DOI QR코드

DOI QR Code

부유구조물의 모델링 차원에 따른 유탄성 응답

Hydroelastic Responses of Floating Structure by Modeling Dimensions

  • 홍상현 (한양대학교 건설환경플랜트공학과) ;
  • 황웅익 (한양대학교 건설환경공학과) ;
  • 이종세 (한양대학교 건설환경플랜트공학과)
  • Hong, Sanghyun (Department of Civil, Environmental and Plant Engineering, Hanyang Univ.) ;
  • Hwang, Woongik (Department of Civil and Environmental Engineering, Hanyang Univ.) ;
  • Lee, Jong Seh (Department of Civil, Environmental and Plant Engineering, Hanyang Univ.)
  • 투고 : 2016.05.23
  • 심사 : 2016.06.09
  • 발행 : 2016.06.30

초록

본 연구에서는 부유구조물 모델링의 효율성 및 응답의 정확성을 분석하기 위해 유체 영역을 압력으로 정의한 유탄성 해석법에 1차원 보-2차원 유체 결합의 1차원 문제와 2차원 판-3차원 유체 결합의 2차원 문제를 적용하여 수치해석을 수행하였다. 그리고 1차원 문제와 2차원 문제의 모델링 차원에 따른 응답을 비교하기 위해 다양한 평판의 변장비와 입사파의 조건을 적용하였다. 이에 따르면 강체거동의 영향이 큰 장주기파에서는 변장비가 변하더라도 두 문제의 유탄성 응답이 거의 유사하게 나타나지만 탄성거동의 영향이 지배적인 단주기파에서는 모델링 차원에 따라 뚜렷한 차이가 발생한다. 즉, 1차원 보 모델은 비록 입사파의 각도는 고려할 수 없지만 평판의 변장비가 클 경우에 유탄성 해석에 적용이 가능하다. 또한, 2차원 평판보다 단순화된 모델링 조건으로서 부유구조물의 전반적인 응답을 분석할 수 있을 뿐만 아니라 수치해석의 효율을 높일 수 있다.

In this study, FE-BE direct coupling methods of 1D and 2D problems are considered for the pontoon-type floating structure and the difference of the modeling dimensions is investigated for the hydroelastic response. The modeling dimensions are defined as the 1D problem consisting 1D beam-2D fluid coupling and the 2D problem consisting 2D plate-3D fluid coupling with zero-draft assumption. For case studies, hydroelastic responses of the 1D Problem are compared to those of the 2D Problem for a wide range of aspect ratio and regular waves. It is shown that the effects of the elastic behavior are increased by decreasing the incident wavelength, whereas the effects of the rigid behavior are increased by increasing the incident wavelength. In 2D problem, the incident wave angle can be considered, and slightly more accurate results can be obtained, but the computational efficiency is lower. On the other hand, in 1D problem with plate-strip condition, the incident wave angle cannot be considered, but when the aspect ratio is large, the overall responses can be analyzed through a simplified model, and the computational efficiency can be improved.

키워드

참고문헌

  1. Bishop, R.E.D., Price, W.G. (1979) Hydroelasticity of Ships, Cambridge University Press, New York.
  2. Georgiadis, C. (1985) Finite Element Modeling of the Response of Long Floating Structures under Harmonic Excitation, J. Energ. Resour.-ASME, 107(1), pp.48-53. https://doi.org/10.1115/1.3231162
  3. Hermans, A.J. (2001) A Geometrical-optics Approach for the Deflection of a Floating Flexible Platform, Applied Ocean Research, 23(5), pp.269-276. https://doi.org/10.1016/S0141-1187(01)00024-4
  4. Hong, S., Lee, J.S. (2016) Hydroelastic Response Analysis of Pneumatically Supported Floating Structures Using a BEM-FEM Coupling Method, KSCE J. Civ. Eng., Online Publish, pp.1-10.
  5. Hong, S.Y. (2008) Development of Design Technology of Very Large Floating Structures, Final Research Report UCPM0139A-37-2, Ministry of Oceans and Fisheries.
  6. John, F. (1950) On the Motion of Floating Bodies II. Simple Harmonic Motions, Comm. Pure & Appl. Math., 3(1), pp.45-101. https://doi.org/10.1002/cpa.3160030106
  7. Khabakhpasheva, T.I., Korobkin, A.A. (2002) Hydroelastic Behaviour of Compound Floating Plate in Waves, J. Eng. Math., 44(1), pp.21-40. https://doi.org/10.1023/A:1020592414338
  8. Newman, J.N. (1985) Algorithms for the Free-s urface Green function, J. Eng. Math., 19(1), pp.57-67. https://doi.org/10.1007/BF00055041
  9. Song, H., Peng, X.-n., Sun, H., Cui, W.-c., Liu, Y.z. (2003) On Beam-on-elastic-foundation (BOEF) Model for the Hydroelastic Response Analysis of Mat-like VLFS, J. Ship Mech., 7(6), pp.116-129.
  10. Suzuki, H., Bhattacharya, B., Fujikubo, M., Hudson, D.A., Riggs, H.R., Seto, H., Shin, H., Shugar, T.A., Yasuzawa, Y., Zong, Z. (2006) ISSC Committee VI.2: Very Large Floating Structures, Proc. 16th Int. Ship & Offshore Struct. Congress, Southampton, UK, pp.391-442.
  11. Taylor, R.E. (2007) Hydroelastic Analysis of Plates and Some Approximations, J. Eng. Math., 58(1), pp.267-278. https://doi.org/10.1007/s10665-006-9121-7
  12. Utsunomiya, T., Watanabe, E., Wu, C., Hayashi, N., Nakai, K., Seika, K. (1995) Wave Response Analysis of a Flexible Floating Structure by BE-FE Combination Method, Proc. 5th Int. Offshore & Polar Eng. Conf., pp.400-405.
  13. Wang, C.D., Meylan, M.H. (2004) A Higher-ordercoupled Boundary Element and Finite Element Method for the Wave Forcing of a Floating Elastic Plate, J. Fluid. & Struct., 19(4), pp.557-572. https://doi.org/10.1016/j.jfluidstructs.2004.02.006
  14. Yago, K., Endo, H. (1996) On the Hydroelastic Response of Box-shaped Floating Structure with Shallow Draft (Tank Test with Large Scale Model), J. Soc. Naval Arch. Japan, 180, pp.341-352.
  15. Zi, G., Kim, J.G., Lee, S.O., Lee, P.-S. (2010) Development of a Design Chart for the Initial Design Stage of Very Large Floating Structures, J. Korean Soc. Civ. Eng., 30(3B), pp.315-324.