DOI QR코드

DOI QR Code

Preparation of Heterogeneous Ion Exchange Membranes and Evaluation of Desalination Performance in Capacitive Deionization

불균질 이온교환막의 제조와 축전식 탈염에서의 탈염 성능 평가

  • Choi, Jae-Hwan (Dept. of Chemical Engineering, Kongju National University) ;
  • Lee, Joo-Bong (Dept. of Chemical Engineering, Kongju National University)
  • Received : 2016.06.25
  • Accepted : 2016.06.29
  • Published : 2016.06.30

Abstract

We prepared heterogeneous ion exchange membranes (hetero-IEMs) for the application of membrane capacitive deionization (MCDI). Hetero-IEMs were fabricated by compressing the mixture of ion exchange resin powders and liner low density polyethylene (LLDPE). Characterization and MCDI desalination experiments were carried for the fabricated membranes. Electrical resistance of membrane decreased and water content increased with increasing the resin content in the hetero-IEMs. However, transport number indicating permselectivity of membrane was similar with that of commercial homogenesous ion exchange membrane. The results of MCDI desalination experiments showed that the adsorption amount for hetero-IEM was about 90% of that of homogeneous membrane due to the high electrical resistance of hetero-IEM. Although desalination performance of hetero-IEM decreased compared with homogeneous membrane, it was thought to be applicable to MCDI because of simple preparation and low price.

막결합 축전식 탈염에 적용하기 위하여 불균질 이온교환막을 제조하였다. 이온교환수지 분말과 LLDPE (linear low density polyethylene) 혼합물을 압착시켜 불균질 이온교환막을 제조하였다. 제조한 막의 막 특성 분석과 MCDI 탈염실험을 실시하였다. 이온교환수지의 함량이 증가할수록 막의 전기저항은 감소하였고 함수율은 증가하였다. 그러나 막의 이온선택성을 나타내는 이온 수송수는 상업용 균질 막과 유사한 성능을 나타냈다. MCDI 탈염실험 결과 탈염량은 불균질 막의 높은 전기저항으로 인해 균질 막을 이용한 셀의 탈염량의 90% 수준을 나타냈다. 불균질 이온교환막은 균질 막에 비해 탈염성능은 다소 감소하였지만 제조가 간편하고 가격이 저렴하여 MCDI에 적용이 가능할 것으로 판단되었다.

Keywords

References

  1. Y. Oren, "Capacitive deionization (CDI) for desalination and water treatment-past, present and future (a review)", Desalination, 228, 10 (2008). https://doi.org/10.1016/j.desal.2007.08.005
  2. S. Porada, R. Zhao, A. van der wal, V. presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013). https://doi.org/10.1016/j.pmatsci.2013.03.005
  3. M. A. Anderson, A. L. Cudero, and J. Palma, "Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?", Electrochim. Acta, 55, 3845 (2010). https://doi.org/10.1016/j.electacta.2010.02.012
  4. T. J. Welgemoed and C. F. Schutte, "Capacitive deionization technology: an alternative desalination solution", Desalination, 183, 327 (2005). https://doi.org/10.1016/j.desal.2005.02.054
  5. Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  6. L. Zou, L. Li, H. Song, and G. Morris, "Using mesoporous carbon electrodes for brackish water desalination", Water Res., 42, 2340 (2008). https://doi.org/10.1016/j.watres.2007.12.022
  7. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, "Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications", Water Res., 44, 2267 (2010). https://doi.org/10.1016/j.watres.2009.10.020
  8. M. Andelman, "Charge barrier flow-through capacitor", CA Patent 2,444,390 (2002).
  9. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, "Desalination of a thermal power plant wastewater by membrane capacitive deionization", Desalination, 196, 125 (2006). https://doi.org/10.1016/j.desal.2006.01.011
  10. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  11. F. Helfferich, "Ion exchange", McGraw-Hill, New York (1962).
  12. H. Strathmann, "Ion-exchange membrane separation processes", Elsevier, Amsterdam, The Netherland (2004).
  13. J. H. Choi, "Transport phenomena in ion-exchange membrane at under- and over-limiting current regions" Ph.D. Dissertation, GIST, Gwangju (2002).
  14. D. Y. Ko, I. S. Kim, and T. S. Hwang, "Preparation and desalination characteristics of highly durable heterogeneous cation-exchange membrane based on polyvinylidene fluoride (PVDF) by casting method for electrodialysis", Membr. J., 26, 97 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.2.97
  15. M. Y. Kim, K. J. Kim, and H. Kang, "Preparation of anion exchange membranes of cross-linked poly ((vinylbenzyl)trimethylammonium chloride-2-hydroxyethyl methacrylate)/poly(vinyl alcohol)", Appl. Chem. Eng., 21, 621 (2010).
  16. Y. J. Kim and J. H. Choi, "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Sep. Purif. Technol., 71, 70 (2010). https://doi.org/10.1016/j.seppur.2009.10.026
  17. R. Zhao, P. M. Biesheuvel, and A. van der Wal, "Energy consumption and constant current operation in membrane capacitive deionization", Energy Environ. Sci., 5, 9520 (2012). https://doi.org/10.1039/c2ee21737f
  18. J. H. Choi, "Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization", Desalination, 347, 224 (2014). https://doi.org/10.1016/j.desal.2014.06.004