DOI QR코드

DOI QR Code

NMR Spectroscopy and Mass Spectrometry of 1, 2-Hexanediol Galactoside synthesized using Escherichia coli β-Galactosidase

대장균 베타-갈락토시데이즈를 이용하여 합성된 1, 2-Hexanediol Galactoside의 NMR Spectroscopy 및 Mass spectrometry

  • Kim, Yi-Ok (Department of Biotechnology, Korea National University of Transportation) ;
  • Lee, Hyang-Yeol (Department of Biotechnology, Korea National University of Transportation) ;
  • Jung, Kyung-Hwan (Department of Biotechnology, Korea National University of Transportation)
  • 김이옥 (한국교통대학교 생명공학과) ;
  • 이향렬 (한국교통대학교 생명공학과) ;
  • 정경환 (한국교통대학교 생명공학과)
  • Received : 2016.05.16
  • Accepted : 2016.06.16
  • Published : 2016.06.30

Abstract

1, 2-Hexanediol galactoside (HD-gal) has been synthesized from 1, 2-hexanediol (HD), a cosmetic preservative, using recombinant Escherichia coli ${\beta}$-galactosidase (${\beta}$-gal) at the high lactose concentration (300 g/l). To confirm the molecular structure of synthesized HD-gal, NMR ($^1H$- and $^{13}C$-) spectroscopy and mass spectrometry of HD-gal were conducted. $^1H$ NMR spectrum of HD-gal showed multiple peaks corresponding to the galactocyl group, which is an evidence of galactocylation on HD. Downfield proton peaks at ${\delta}_H$ 4.44 ppm and multiple peaks from ${\delta}_H$3.96~3.58 ppm were indicative of galactocylation on HD. Up field proton peaks at ${\delta}_H$ 1.60~1.35 ppm and 0.92 ppm showed the presence of $CH_2$ and $CH_3$ protons of HD. $^{13}C$ NMR spectrum revealed the presence of 21 carbons suggestive of ${\alpha}$- and ${\beta}$-anomers of HD-gal. Among 12 carbon peaks from each anomers, the 3 peaks at dC 68.6, 60.9 and 13.2 ppm were assigned to be overlapped showing only 21 peaks out of total 24 peaks. The mass value (protonated HD-gal, m/z = 281.1601) from mass spectrometry analysis of HD-gal, and $^1H$ and $^{13}C$ NMR spectral data were in well agreement with the expecting structure of HD-gal. For further study, the minimum inhibitory concentrations (MICs) of HD-gal against bacteria will be investigated, and, in addition, cytotoxicity to human skin cells of HD-gal will be examined. It is expected that it will eventually be able to develop a new cosmetic preservative, which have low cytotoxicity against human skin cell and maintains antimicrobial effect.

화장품용 방부제로 사용하고 있는 1, 2-hexanediol (HD)에 높은 농도의 lactose (300 g/l)를 넣고, 재조합 대장균 ${\beta}$-galactosidase (${\beta}$-gal)를 이용하여 galactose 한 분자를 결합시키는 transgalactosylation 반응을 시켜서, 1, 2-hexanediol galactoside (HD-gal)을 합성하였다. 그리고, 합성된 HD-gal 분자를 확인하기 위하여, HD-gal에 대한 NMR ($^1H$- and $^{13}C$-) 스펙트럼 분석과 mass 스펙트럼 분석을 실시하였다. HD-gal의 $^1H$ NMR 스펙트럼에서 HD에 갈락토실화가 되었음을 보여주는 다양한 피크를 확인하였다. $^1H$ NMR 스펙트럼의 다운필드인 ${\delta}_H$ 4.44 ppm과 ${\delta}_H$ 3.96~3.58 ppm에서 나타나는 다양한 피크들은 HD에 갈락토실화가 되었다는 것을 잘 암시하고 있으며, 또한 $^1H$ NMR 스펙트럼의 업필드에서 나타나는 ${\delta}_H$ 1.60~1.35 ppm과 0.92 ppm의 피크는 HD의 $CH_2$$CH_3$ 작용기로부터 나타나는 피크로써 HD가 본 물질에 존재한다는 것을 나타내고 있다. $^{13}C$ NMR 스펙트럼에서는 HD-gal의 알파-아노머와 베타-아노머의 구조에서 기인하는 총 21의 카본피크가 나타났고, 각 아노머마다 12개의 카본이 존재하는데 이중 ${\delta}_C$ 68.6, 60.9 and 13.2 ppm에 보이는 3개의 카본은 겹쳐서 나타나 총 24개의 피크 중 21개가 나타났다. 또한, 질량스펙트럼 분석에서는 protonated HD-gal인 281.1601 (m/z)의 peak를 확인할 수 있었다. 이를 종합하면, NMR ($^1H$- and $^{13}C$-) 스펙트럼 분석 결과와 질량분석 결과들은 우리가 기대했던 HD-gal의 구조와 매우 잘 일치하고 있다는 것을 알 수 있었다. 앞으로 추가적으로, 세균에 대한 minimum inhibitory concentrations (MICs) 조사와 human skin cell에 대한 독성연구를 추가적으로 진행할 예정이며, 이러한 결과를 근거로 항균력을 유지하면서 피부세포에 대한 독성이 감소된 화장품용 방부제의 연구/개발이 계속되기를 기대하고 있다.

Keywords

References

  1. W. Johnson Jr., W. F. Bergfeld, D. V. Belsito, R. A. Hill, C. D. Klaassen, D. Liebler, J. G. Marks Jr., R. C Shank, T. J. Slaga, P. W. Snyder, and F. A. Andersen, Safety Assessment of 1, 2-Glycols as Used in Cosmetics. Int. J. Toxicol., 31(5 Suppl), 147S (2012). https://doi.org/10.1177/1091581812460409
  2. E. Lee, S. An, S.-A. Cho, Y. Yun, J. Han, Y. K. Hwang, H. K. Kim, and T. R. Lee, The Influence of Alkane Chain Length on the Skin Irritation Potential of 1, 2-Alkanediols, Int. J. Cosmet. Sci., 33(5), 421 (2011). https://doi.org/10.1111/j.1468-2494.2011.00646.x
  3. S. B. Levy, A. M. Dulichan, and M. Helman, Safety of a Preservative System containing 1, 2-Hexanediol and Caprylyl glycol, Cutan. Ocu.l Toxicol., 28(1), 23 (2009). https://doi.org/10.1080/15569520802636082
  4. Y. -O. Kim and K. -H. Jung, Enzymatic Synthesis of 1, 2-Hexanediol Galactoside by Whole cells of ${\beta}$-Galactosidasecontaining Recombinant Escherichia coli. J. Life Sci., 26(5), 608 (2016). https://doi.org/10.5352/JLS.2016.26.5.608
  5. S. -E. Lee, H. -Y. Lee, and K. -H. Jung, Production of Chlorphenesin Galactoside by Whole Cells of ${\beta}$-Galactosidasecontaining Escherichia coli, J. Microbiol. Biotechnol., 23(6), 826 (2013). https://doi.org/10.4014/jmb.1211.11009
  6. H. -Y. Lee and K. -H. Jung, Enzymatic Synthesis of 2-Phenoxyethanol Galactoside by Whole Cells of ${\beta}$-Galactosidasecontaining Escherichia coli, J. Microbiol. Biotechnol., 24(9), 1254 (2014). https://doi.org/10.4014/jmb.1404.04004
  7. S. -E. Lee, T. M. Jo, H. -Y. Lee, J. Lee, and K. -H. Jung, ${\beta}$-Galactosidasecatalyzed Synthesis of Galactosyl Chlorphenesin and its Characterization, Appl. Biochem. Biotechnol., 171(6), 1299 (2013). https://doi.org/10.1007/s12010-013-0213-3
  8. K. -H. Jung and H. -Y. Lee, Escherichia coli ${\beta}$-Galactosidase-catalyzed Synthesis of 2-Phenoxyethanol Galactoside and its Characterization, Bioprocess Biosyst. Eng., 38(2), 365 (2015). https://doi.org/10.1007/s00449-014-1276-4
  9. G. D. Benjamin and M. A. Robinson, Drug Delivery Systems based on Sugar-macromolecule Conjugates, Curr. Opin. Drug Discov. Devel., 5(2), 279 (2002).
  10. J. Huang, F. Gao, X. Tang, J. Yu, D. Wang, S. Liu, and Y. Li, Liver-targeting Doxorubicin-conjugated Polymeric Prodrug with pH-Triggered Drug Release Profile, Polym. Int., 59(10), 1390 (2010). https://doi.org/10.1002/pi.2880
  11. D. Melisi, A. Curcio, E. Luongo, E. Morelli, and M. G. Rimoli, D-Galactose as a Vector for Prodrug Design, Curr. Top. Med. Chem., 11(18), 2288 (2011). https://doi.org/10.2174/156802611797183258
  12. L. F. Tietze and K. Schmuck, Prodrugs for Targeted Tumor Therapies: Recent Developments in ADEPT, GDEPT and PMT, Curr. Pharm. Design, 17(32), 3527 (2011). https://doi.org/10.2174/138161211798194459
  13. L. Q. Yan, N. Li, and M. H. Zong, First Enzymatic Galactosylation of Acyclic Nucleoside Drugs by ${\beta}$-Galactosidase: Synthesis of Water-soluble ${\beta}$-DGalactosidic Prodrugs, Biotechnol. Bioprocess Eng., 19(4), 586 (2014). https://doi.org/10.1007/s12257-013-0823-1
  14. K. -H. Jung, Enhanced Enzyme Activities of Inclusion Bodies of Recombinant ${\beta}$-Galactosidase via the Addition of Inducer Analog after L-Arabinose Induction in the araBAD Promoter System of Escherichia coli, J. Microbiol. Biotechnol., 18(3), 434 (2008).
  15. K. -H. Jung, J. -H. Yeon, S. -K. Moon, and J. -H. Choi, Methyl ${\alpha}$-DGlucopyranoside Enhances the Enzymatic Activity of Recombinant ${\beta}$-Galactosidase Inclusion Bodies in the araBAD Promoter System of Escherichia coli. J. Ind. Microbiol. Biotechnol., 35(7), 695 (2008). https://doi.org/10.1007/s10295-008-0329-6
  16. N. Bridiau, S. Taboubi, N. Marzouki, M. D. Legoy, and T. Maugard, ${\beta}$ -Galactosidase Catalyzed Selective Galactosylation of Aromatic Compounds, Biotechnol. Prog., 22(1), 326 (2006). https://doi.org/10.1021/bp050230n
  17. C. Scheckermann, F. Wagner, and L. Fischer, Galactosylation of Antibiotics using the ${\beta}$-Galactosidase from Aspergillus oryae, Enzyme Microb. Technol., 20(8), 629 (1997). https://doi.org/10.1016/S0141-0229(96)00211-6

Cited by

  1. 대장균 β-Galactosidse를 이용한 1, 2-Hexanediol galactoside의 합성과 Ethyl Acetate 추출 및 Silica Gel Chromatography를이용한 정제 vol.33, pp.3, 2016, https://doi.org/10.12925/jkocs.2016.33.3.498
  2. 베타-갈락토시데이즈를 이용하여 합성된 Benzyl Alcohol Galactoside의 NMR Spectroscopy 및 Mass spectrometry vol.36, pp.1, 2019, https://doi.org/10.12925/jkocs.2019.36.1.84
  3. 대장균 베타-갈락토시데이즈를 이용한 Phenylethanol Galactoside 합성 조건의 최적화 vol.38, pp.1, 2016, https://doi.org/10.12925/jkocs.2021.38.1.99
  4. 1, 2-Octanediol과 1, 2-Octanediol Galactoside의 항균력 및 세포독성 비교연구 vol.38, pp.3, 2016, https://doi.org/10.12925/jkocs.2021.38.3.629
  5. Mass spectrometry와 NMR Spectroscopy를 이용한 1, 2-Octanediol Galactoside의 효소합성 확인 vol.38, pp.3, 2016, https://doi.org/10.12925/jkocs.2021.38.3.824