DOI QR코드

DOI QR Code

Study on Physiologically Active Compounds and Antioxidant Activity of Korean Yam (Dioscorea batatas DECNE.)

  • Duan, Yishan (Department of Food Science and Technology, Pusan National University) ;
  • Kim, Gyeong-Hwuii (Department of Biological Science and Technology, Yonsei University) ;
  • Kim, Han-Soo (Department of Food Science and Technology, Pusan National University)
  • Received : 2016.05.01
  • Accepted : 2016.06.22
  • Published : 2016.06.30

Abstract

The bioactive compound and antioxidant property of Korean yam (Dioscorea batatas DECNE.) were studied using in vitro methods. Yam available in Korea was analyzed for lycopene, chlorophyll a, b, tannin, phytic acid and total saponin contents. 70% Methanol, 70% ethanol and chloroform-methanol mixture (CM, 2:1, v/v) were used to extract yam. Then the antioxidant activity evaluated through ferrous ion chelating activity, ${\beta}$-carotene bleaching method, lipid peroxidation inhibition and nitric oxide (NO) radical scavenging activity. 70% Methanol extract showed the highest ferrous ion chelating activity and NO radical scavenging activity. And CM extract was the most effective in inhibition of linoleic acid peroxidation evaluated by ${\beta}$-carotene bleaching assay and lipid peroxidation inhibition assay. Based on the results obtained, yam is a potential active ingredient that could be applied in antioxidation as well as bio-health functional food to take a good part in prevention of human diseases and aging.

Keywords

References

  1. M. Valko, D. Leibfritz, J. Moncol, M. T. D. Cronin, M, Mazur, J. Telser, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 39, 44 (2007). https://doi.org/10.1016/j.biocel.2006.07.001
  2. M. Oktay, I. Gulcin, o. I. Kufrevioglu, Determination of in vitro antioxidant activity of fennel (Foeniculum vulgare) seed extracts, LWT-Food Sci. Technol., 36, 263 (2003).
  3. A. C. Carr, M. R. McCall, B. Frei, Oxidation of LDL by myeloperoxidase and reactive nitrogen species, Arteriosclerosis Thrombo. Vascu. Biol., 20, 1716 (2000). https://doi.org/10.1161/01.ATV.20.7.1716
  4. T. Finkel, N. J. Holbrook, Oxidants, oxidative stress and the biology of aging, Nature, 408, 239 (2000). https://doi.org/10.1038/35041687
  5. L. Migliore, F. Coppede, Genetic and environmental factors in cancer and neurodegenerative diseases, Mutation Res., 512, 135 (2002). https://doi.org/10.1016/S1383-5742(02)00046-7
  6. J. T. Lin, D. J. Yang, Determination of steroidal saponins in different organs of yam (Dioscorea pseudojaponica Yamamoto), Food Chem., 108, 1068 (2008). https://doi.org/10.1016/j.foodchem.2007.11.041
  7. C. S. Hariprakash, B. Nambisan, Carbohydrate metabolism during dormancy and sprouting in yam (Dioscorea) tubers: changes in carbohydrate constituents in yam (Dioscorea) tubers during dormancy and sprouting, J. Agric. Food Chem., 44, 3066 (1996). https://doi.org/10.1021/jf950784d
  8. P. S. Oh, K. T. Lim, Plant glycoprotein modulates the expression of interleukin-1 ${\beta}$ via inhibition of MAP kinase in HMC-1 cells, Biosci. Biotechnol. Biochem., 72, 2133 (2008). https://doi.org/10.1271/bbb.80204
  9. P. S. Oh, K. T. Lim, Antioxidant activity of Dioscorea batatas Decne glycoprotein, European Food Res. Technol., 226, 507 (2008). https://doi.org/10.1007/s00217-007-0563-6
  10. S. Y. Kim, H. J. Jwa, Y. Yanagawa, T. S. Park, Extract from Dioscorea batatas ameliorates insulin resistance in mice fed a high-fat diet, J. Med. Food, 15, 527 (2012). https://doi.org/10.1089/jmf.2011.2008
  11. W. G. Taylor, J. L. Elder, P. R. Chang, K. W. Richards, Micro- determination of diosgenin from fenugreek (Trigonella foenum- graecum) seeds, J. Agric. Food Chem., 48, 5206 (2000). https://doi.org/10.1021/jf000467t
  12. M. Araghiniknam, S. Chung, T. Nelson-White, C. Eskelson, R. R. Waston, Antioxidant activity of dioscorea and dehydroepiandrosterone (DHEA) in older humans, Life Sci., 59, 147 (1996).
  13. M. Nagata, I. Yamashita, Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit, Japanese Soc. Food Sci. Technol., 39, 925 (1992). https://doi.org/10.3136/nskkk1962.39.925
  14. M. L. Price, L. G. Butler, Rapid visual estimation and spectrophotometric determination of tannin content of sorghum grain, J. Agric. Food Chem., 25, 1268 (1977). https://doi.org/10.1021/jf60214a034
  15. P. Wu, T. Zhao, J. C. Tian, Phytic acid contents of wheat flours from different mill streams, Agric. Sci. China, 9, 1684 (2010). https://doi.org/10.1016/S1671-2927(09)60266-2
  16. B. Xu, S. K. C. Chang, Phytochemical profiles and health-promoting effects of cool-season food legumes as influenced by thermal processing, J. Agric. Food Chem., 57, 10718 (2009). https://doi.org/10.1021/jf902594m
  17. C. L. Hsu, W. Chen, Y. M. Weng, C. Y. Tseng, Chemical composition, physical properties, and antioxidant activities of yam flours as affected by different drying methods, Food Chem., 83, 85 (2003). https://doi.org/10.1016/S0308-8146(03)00053-0
  18. A. A. Elzaawely, T. D. Xuan, S. Tawata, Antioxidation and anti- bacterial activities of Rumex japonicus HOUUT. aerial parts, Biolo. Pharmac., 28, 2225 (2005). https://doi.org/10.1248/bpb.28.2225
  19. J. Y. Je, Z. J. Qian, H. G. Byun, S. K. Kim, Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis, Proc. Biochem., 42, 840 (2007). https://doi.org/10.1016/j.procbio.2007.02.006
  20. S. Sahoo, G. Ghosh, D. Das, S. Nayak, Phytochemical investigation and in vitro antioxidant activity of an indigenous medicinal plant Alpinia nigra B.L. Burtt, Asian Pacific J. Trop. Biomed., 3, 871 (2013). https://doi.org/10.1016/S2221-1691(13)60171-9
  21. A. A. Adelusi, A. O. Lawanson, Diseaseinduced changes in carotenoid content of edible yams (Dioscorea spp.) infected by Botryodiplodia theobrornae and Aspergillus niger, Mycopathologia, 98, 49 (1987). https://doi.org/10.1007/BF00431018
  22. C. S. Buelga, A. Scalbert, Proanthocyanidins and tannin-like compounds-nature, occurrence, dietary intake and effects on nutrition and health, J. Sci. Food Agric., 80, 1094 (2000). https://doi.org/10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1
  23. H. P. S. Makkar, Effects and fate of tannins in ruminant animals, adaptation to tannins, and strategies to overcome detrimental effects of feeding tannin-rich feeds, Small Ruminant Res., 49, 241 (2003). https://doi.org/10.1016/S0921-4488(03)00142-1
  24. L. R. Lai, S. C. Hsieh, H. Y. Huang, C. C. Chou, Effect of lactic fermentation on the total phenolic, saponin and phytic acid contents as well as anti-colon cancer cell proliferation activity of soymilk, J. Biosci. Bioeng., 115, 552 (2013). https://doi.org/10.1016/j.jbiosc.2012.11.022
  25. I. Gulcin, Antioxidant activity of caffeic acid (3,4-dihydroxycinnamic acid), Toxicol., 217, 213 (2006). https://doi.org/10.1016/j.tox.2005.09.011
  26. P. D. Duh, Y. Y. Tu, G. C. Yen, Antioxidant activity of water extract of Harng Jyur (Chrysanthemum morifolium Ramat), LWT- Food Sci. Technol., 32, 269 (1999). https://doi.org/10.1006/fstl.1999.0548
  27. M. H. Gordon, The mechanism of antioxidant action in vitro. In B. J. F. Hudson (ed.), Food antioxidants, London, New York, p. 1 (1990).
  28. E. O. Farombi, G. Britton, G. O. Emerole, Evaluation of the antioxidant activity and partial characterisation of extracts from browned yam flour diet, Food Res. Int., 33, 493 (2000). https://doi.org/10.1016/S0963-9969(00)00074-0
  29. B. Sultana, F. Anwar, R. Przybylski, Antioxidant potential of corncob extracts for stabilization of corn oil subjected to microwave heating, Food Chem., 104, 997 (2007). https://doi.org/10.1016/j.foodchem.2006.12.061
  30. A. Kumaran, R. J. Karunakaran, In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India, LWT-Food Sci. Technol., 40, 344 (2007). https://doi.org/10.1016/j.lwt.2005.09.011