DOI QR코드

DOI QR Code

Characterization of α-agarase from Alteromonas sp. SH-1

Alteromonas sp. SH-1균 유래의 α-agarase의 특성조사

  • Lee, Sol-Ji (Department of Bioscience, Graduate School, Silla University) ;
  • Shin, Da-Young (Department of Pharmaceutical Engineering, Silla University) ;
  • Kim, Jae-Deog (Department of Green-Chemistry Convergence Engineering, Silla University) ;
  • Lee, Dong-Geun (Department of Bioscience, Graduate School, Silla University) ;
  • Lee, Sang-Hyeon (Department of Bioscience, Graduate School, Silla University)
  • 이솔지 (신라대학교 일반대학원 바이오과학과) ;
  • 신다영 (신라대학교 제약공학과) ;
  • 김재덕 (신라대학교 일반대학원 그린화학융합공학과) ;
  • 이동근 (신라대학교 일반대학원 바이오과학과) ;
  • 이상현 (신라대학교 일반대학원 바이오과학과)
  • Received : 2015.11.11
  • Accepted : 2016.06.13
  • Published : 2016.06.30

Abstract

A novel agar-degrading marine bacterium, SH-1 strain, was isolated from seashore of Namhae at Gyeongnam province, Korea. The SH-1 strain exhibited 98% similarity with Alteromonas species based on 16S rDNA sequencing and named as Alteromonas sp. SH-1. Alteromonas sp. SH-1 showed agarase activity of 348.3 U/L (1.67 U/mg protein). The molecular masses of the enzymes were predicted as about 85 kDa and 110 kDa by SDS-PAGE and zymogram. The enzymatic activity was optimal at $30^{\circ}C$ and the relative agarase activity was decreased as temperature increase from $30^{\circ}C$ and thus about 90% and 70% activities were shown at $40^{\circ}C$ and $50^{\circ}C$, respectively. The optimum pH was 6.0 for agarase activity in 20 mM Tris-HCl buffer and activities were less than 70% and 85% activity at pH 5.0 and pH 7.0, respectively, compared with that at pH 6. Agarase activity has remained over 90% at $20^{\circ}C$ after 1.5 hour exposure at this temperature. However, its activity was less than 60% at $30^{\circ}C$ after 0.5 h exposure at this temperature. The enzymes produced agarooligosaccharides such as agaropentaose and agarotriose from agarose, indicating that the agarases are ${\alpha}$-agarases. Thus, Alteromonas sp. SH-1 and its agarases would be useful for the industrial production of agarooligosaccharides which are known as having anticancer and antioxidation activities.

Keywords

References

  1. Jang, H. J., D. G. Lee, S. W. Lee, M. J. Jeon, W. J. Chun, K. K. Kwon, H. S. Lee, and S. H. Lee (2011) Isolation of a marinederived Flammeovirga sp. mbrc-1 strain and characterization of its agarase. KSBB J. 26: 552-556. https://doi.org/10.7841/ksbbj.2011.26.6.552
  2. Lee, D. G., N. Y. Kim, M. K. Jang, O. H. Lee, and S. H. Lee (2007) Isolation and characterization of a marine bacterium Thalassomonas sp. SL-5 producing ${\beta}$-agarase. J. Life Sci. 17: 70-75. https://doi.org/10.5352/JLS.2007.17.1.070
  3. Hong, J. H., J. J. Lee, S. H. Hur, H. S. Choi, and J. Y. Kong (2001) Effect of agarooligosaccharides on the growth of intestinal bacteria. J. Fd. Hyg. Safety 16: 11-15.
  4. Seo, Y. B., Y. Lu, W. J. Chi, H. R. Pack, K. J. Jeong, S. K. Hong, and Y. K. Chang (2014) Heterologous expression of a newly screened ${\beta}$-agarase from Alteromonas sp. GNUM1 in Escherichia coli and its application for agarose degradation. Process Biochem. 49: 430-436. https://doi.org/10.1016/j.procbio.2013.12.014
  5. Yang, M., X. Mao, N. Liu, Y. Qiu, and C. Xue (2014) Purification and characterization of two agarases from Agarivorans albus OAY 02. Process Biochem. 49: 905-912. https://doi.org/10.1016/j.procbio.2014.02.015
  6. Hassairi, I., R. Ben Amar, M. Nonus, and B. B. Gupta (2001) Production and separation of ${\alpha}$-agarase form Alteromonas agarlyticus strain GJ1B. Biores. Technol. 79: 47-51. https://doi.org/10.1016/S0960-8524(01)00037-2
  7. Kim, Y. J. (2010) Properties of the agarase and its gene isolated from a marine bacterium, Tamlana agarivorans. M.S. dissertation, University of Chungnam, Taejon, Korea.
  8. Kim, Y. N. (2011) Isolation and purification of new agarase from marine bacterium. M.S. dissertation, University of Kyungsang, Jinju, Korea.
  9. Lee, D. G., M. K. Jang, O. H. Lee, N. Y. Kim, S. A. Ju, and S. H. Lee (2008) Over-production of a glycoside hydrolase family 50 ${\beta}$-agarase from Agarivorans sp. JA-1 in Bacillus subtilis and the whitening effect of its product. Biotechnol. Lett. 30: 911-918. https://doi.org/10.1007/s10529-008-9634-4
  10. Kim, H. T., S. Lee, D. Lee, H. S. Kim, W. G. Bang, K. H. Kim, and I. G. Choi (2010) Overexpression and molecular characterization of Aga50D from Saccharophagus degradans 2-40: An exo-type ${\beta}$-agarase producing neoagarobiose. Appl. Microbiol. Biotechnol. 86: 227-234. https://doi.org/10.1007/s00253-009-2256-5
  11. Lakshmikanth, M., S. Manohar, Y. Souche, and J. Lalitha (2009) Extracellular ${\beta}$-agarase LSL-1 producing neoagarobiose from a newly isolated agar-liquefying soil bacterium, Acinetobacter sp., AG LSL-1. Process Biochem. 44: 999-1003. https://doi.org/10.1016/j.procbio.2009.04.025
  12. Yang, J. I., L. C. Chen, Y. Y. Shih, C. Hsieh, C. Y. Chen, W. M. Chen, and C. C. Chen (2011) Cloning and characterization of ${\beta}$-agarase AgaYT from Flammeovirga yaeyamensis strain YT. J. Biosci. Bioeng. 112: 225-232. https://doi.org/10.1016/j.jbiosc.2011.05.016
  13. Temuujin, U., W. J. Chi, Y. K. Chang, and S. K. Hong (2012) Identification and biochemical characterization of Sco3487 from Streptomyces coelicolor A3(2), an exo- and endo-type ${\beta}$-agarase-producing neoagarobiose. J. Bacteriol. 194: 142-149. https://doi.org/10.1128/JB.05978-11
  14. Lee, D. G., O. H. Lee, H. J. Jang, M. K. Jang, K. H. Yoo, and S. H. Lee (2008) Isolation and characterization of a marine derived bacterium Glaciecola sp. SL-12 producing ${\beta}$-agarase. J. Life Sci. 18: 58-62. https://doi.org/10.5352/JLS.2008.18.1.058
  15. Jang, M. K., S. W. Lee, D. G. Lee, N. Y. Kim, K. H. Yu, H. J. Jang, S. Kim, A. Kim, and S. H. Lee (2010) Enhancement of the thermostability of a recombinant ${\beta}$-agarase, AgaB, from Zobellia galactanivorans by random mutagenesis. Biotechnol. Lett. 32: 943-949. https://doi.org/10.1007/s10529-010-0237-5
  16. Chi, W. J., J. H. Lim, D. Y. Park, M. C. Kim, C. J. Kim, Y. K. Chang, and S. K. Hong (2013) Isolation and characterization of a novel agar degrading bacterium Alteromonas macleodii subsp. Gnum08120, from red macroalgae. Korean J. Microbiol. Biotechnol. 41: 8-16. https://doi.org/10.4014/kjmb.1208.08001
  17. Kim. J. H., and S. K. Hong (2012) Isolation and characterization of an agarase-producing bacterial strain, Alteromonas sp. GNUM-1, from the west Sea, Korea. J. Microbiol. Biotech. 22: 1621-1628. https://doi.org/10.4014/jmb.1209.08087
  18. Leon, O., L. Quintana, G. Peruzzo and J. C. Slebe (1992) Purification and properties of an extracellular agarase from Alteromonas sp. strain C-1. Microbiol. 58: 4060-4063.
  19. Wang, J., H. Mou, X. Jiang, and H. Guan (2006) Characterization of a novel ${\beta}$-agarase from marine Alteromonas sp. SY37-12 and its degrading products. Appl. Microbiol. Biotechnol. 71: 833-839. https://doi.org/10.1007/s00253-005-0207-3
  20. Ohta, Y., Y. Hatada, M. Miyazaki, Y. Nogi, S. Ito, and K. Horikoshi (2005) Purification and characterization of a novel from a Thalassomonas sp. Curr. Microbiol. 50: 212-216. https://doi.org/10.1007/s00284-004-4435-z
  21. Fu, X. T. and S. M. Kim (2010) Agarase: Review of major sources, categories, purification method, enzyme characteristics and applications. Mar. Drugs 8: 200-218. https://doi.org/10.3390/md8010200
  22. Kim, J. H., Y. H. Kim., S. K. Kim, B. W. Kim, and S. W. Nam (2011) Properties and Industrial applications of seaweed polysaccharides-degrading enzymes from the marine microorganisms. Korean J. Microbiol. Biotechnol. 39: 189-199.
  23. Kohtaro, K., M. Masuda, Y. Iwasaki, H. Nakagawa, R. Kobayashi, and S. Usami (1999) Purification and characterization of a novel ${\beta}$-agarase from an alkalophilic bacterium, Alteromonas sp. E-l. J. Biosci. Bioengi. 87: 436-441. https://doi.org/10.1016/S1389-1723(99)80091-7

Cited by

  1. Future direction in marine bacterial agarases for industrial applications vol.102, pp.16, 2018, https://doi.org/10.1007/s00253-018-9156-5