DOI QR코드

DOI QR Code

Neuronal Cell Protective Effect of Dendropanax morbifera Extract against High Glucose-Induced Oxidative Stress

High Glucose로 유도된 산화 스트레스에 대한 황칠나무 잎 추출물의 뇌신경세포 보호 효과

  • Kim, Jong Min (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Park, Seon Kyeong (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Guo, Tian Jiao (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kang, Jin Yong (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Ha, Jeong Su (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Lee, Du Sang (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kwon, O-Jun (Gyeongbuk Institute for Regional Program Evaluation) ;
  • Lee, Uk (Division of Special Purpose Trees, National Institute of Forest Science) ;
  • Heo, Ho Jin (Division of Applied Life Science (BK21 Plus), Institute of Agriculture and Life Science, Gyeongsang National University)
  • 김종민 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 박선경 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 궈텐쟈오 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 강진용 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 하정수 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 이두상 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원) ;
  • 권오준 (경북지역산업평가단) ;
  • 이욱 (국립산림과학원 특용자원연구과) ;
  • 허호진 (경상대학교 응용생명과학부(BK21 Plus), 농업생명과학연구원)
  • Received : 2016.03.14
  • Accepted : 2016.04.26
  • Published : 2016.07.31

Abstract

Antioxidant activities and neuroprotective effects of ethyl acetate fraction from Dendropanax morbifera (EFDM) against high glucose-induced oxidative stress and neurotoxicity were investigated to confirm their physiological activities. An 80% ethanolic extract of D. morbifera showed the highest contents of total phenolic compounds as well as 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and 1,1-diphenyl-2-picrylhydrazyl radical scavenging activities. The extract was fractionated using several solvents, and the ethyl acetate fraction showed the highest activities in ferric reducing/antioxidant power and malondialdehyde inhibitory assays. To evaluate the neuroprotective effect based on antioxidant activities, cell viability was assessed using PC12 and MC-IXC cells in $H_2O_2$- and high glucose-induced cytotoxic assays, respectively. EFDM evidently showed neuroprotective effects in all cells (neuron-like PC12 cells and human brain-originated neuroblastoma MC-IXC cells). Inhibitory effect of the extract on acetylcholinesterase (AChE) as an acetylcholine-hydrolyzing enzyme was performed to examine the effect on cognitive function. EFDM presented an AChE inhibitory effect. Finally, high-performance liquid chromatography analysis showed that the major phenolic compound of EFDM is probably a rutin.

본 연구는 한국 고유 식용 자원인 황칠나무의 잎을 이용한 항산화 효과 및 고혈당으로 인한 신경/뇌신경세포 보호 효과를 알아보고자 실시하였다. 황칠나무 잎 추출물의 총폴리페놀 함량, ABTS와 DPPH 라디칼 소거 활성을 측정하였으며 활성이 가장 높은 80% 에탄올 추출물을 이용하여 극성 정도에 따라 분획을 하였다. 이들 중 ethyl acetate 분획물이 총 항산화력(FRAP assay)과 지질과산화물(MDA) 생성 억제 활성이 다른 분획물에 비하여 유의적으로 높은 값을 나타냈다. 이를 이용하여 신경세포로서의 PC12 세포와 인간 뇌조직 유래 뇌신경세포로서의 MC-IXC 세포에서 $H_2O_2$와 고혈당에 의한 세포생존율을 측정하였고, ethyl acetate 분획물은 산화적 스트레스로부터의 효과적인 세포 보호 효과를 나타냈다. 또한, 뇌신경말단에서 신경전달물질(ACh)의 분해를 유발하는 효소(AChE)의 저해 효과를 측정하였고, ethyl acetate 분획물은 유의적인 AChE 저해 효과를 보였다. 마지막으로 황칠나무 잎 ethyl acetate 분획물의 생리활성 물질을 확인하고자 HPLC 분석을 하였으며, 주요 생리활성 물질은 rutin으로 추정되었다. 이러한 연구 결과를 바탕으로 고려할 때 황칠나무 잎 추출물은 천연 항산화제의 역할을 가지고 있을 뿐만 아니라 이를 통해 산화적 스트레스로부터 뇌신경세포 등을 효과적으로 보호할 수 있으며 더불어 AChE 저해 활성을 통한 인지기능 개선 가능 소재로서 연구될 수 있을 것으로 판단된다.

Keywords

References

  1. Zimmet P, Alberti KGMM, Shaw J. 2001. Global and societal implications of the diabetes epidemic. Nature 414: 782-787. https://doi.org/10.1038/414782a
  2. Ceolotto G, Gallo A, Papparella I, Franco L, Murphy E, Iori E, Pagnin E, Fadini GP, Albiero M, Semplicini A, Avogaro A. 2007. Rosiglitazone reduces glucose-induced oxidative stress mediated by NAD(P)H oxidase via AMPK-dependent mechanism. Arterioscler Thromb Vasc Biol 27: 2627-2633. https://doi.org/10.1161/ATVBAHA.107.155762
  3. Vincent AM, Callaghan BC, Smith AL, Feldman EL. 2011. Diabetic neuropathy: cellular mechanisms as therapeutic targets. Nat Rev Neurol 7: 573-583. https://doi.org/10.1038/nrneurol.2011.137
  4. Tesfaye S, Selvarajah D. 2012. Advances in the epidemiology, pathogenesis and management of diabetic peripheral neuropathy. Diabetes Metab Res Rev 28: 8-14.
  5. Zaltzberg H, Kanter Y, Aviram M, Levy Y. 1999. Increased plasma oxidizability and decreased erythrocyte and plasma antioxidative capacity in patients with NIDDM. Isr Med Assoc J 1: 228-231.
  6. Peng J, Jones GL, Watson K. 2000. Stress proteins as biomarkers of oxidative stress: effects of antioxidant supplements. Free Radic Biol Med 28: 1598-1606. https://doi.org/10.1016/S0891-5849(00)00276-8
  7. Son SM, Kim IJ, Kim YK. 2000. Study on role of neutrophil in endothelial cell injury under high glucose condition. J Korean Diabetes Assoc 24: 652-665.
  8. Nandita S, Rajini PS. 2004. Free radical scavenging activity of an aqueous extract of potato peel. Food Chem 85: 611-616. https://doi.org/10.1016/j.foodchem.2003.07.003
  9. Ministry of Food and Drug Safety. 2010. Food Material Information. http://www.foodsafetykorea.go.kr/portal/safefoodlife/foodMeterial/foodMeterialDB.do?menu_no=294&menu_grp=MENU_GRP01 (accessed Jan 2016).
  10. Hyun TK, Kim MO, Lee H, Kim Y, Kim E, Kim JS. 2013. Evaluation of anti-oxidant and anti-cancer properties of Dendropanax morbifera Leveille. Food Chem 141: 1947-1955. https://doi.org/10.1016/j.foodchem.2013.05.021
  11. Moon HI. 2011. Antidiabetic effects of dendropanoxide from leaves of Dendropanax morbifera Leveille in normal and streptozotocin-induced diabetic rats. Hum Exp Toxicol 30: 870-875. https://doi.org/10.1177/0960327110382131
  12. Hwang IG, Woo KS, Kim TM, Kim DJ, Yang MH, Jeong HS. 2006. Change of physicochemical characteristics of Korean pear (Pyrus pyrifolia Nakai) juice with heat treatment conditions. Korean J Food Sci Technol 38: 342-347.
  13. Kim DO, Jeong SW, Lee CY. 2003. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem 81: 321-326. https://doi.org/10.1016/S0308-8146(02)00423-5
  14. Blois MS. 1958. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199-1200. https://doi.org/10.1038/1811199a0
  15. Benzie IFF, Strain JJ. 1996. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. Anal Biochem 239: 70-76. https://doi.org/10.1006/abio.1996.0292
  16. Chang ST, Wu JH, Wang SY, Kang PL, Yang NS, Shyur LF. 2001. Antioxidant activity of extracts from Acacia confusa bark and heartwood. J Agric Food Chem 49: 3420-3424. https://doi.org/10.1021/jf0100907
  17. Kanski J, Aksenova M, Stoyanova A, Butterfield DA. 2002. Ferulic acid antioxidant protection against hydroxyl and peroxyl radical oxidation in synaptosomal and neuronal cell culture systems in vitro: structure-activity studies. J Nutr Biochem 13: 273-281. https://doi.org/10.1016/S0955-2863(01)00215-7
  18. Ellman GL, Courtney KD, Andres V Jr, Featherstone RM. 1961. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7: 88-95. https://doi.org/10.1016/0006-2952(61)90145-9
  19. Lee HS, Park YW. 2005. Antioxidant activity and antibacterial activities from different parts of broccoli extracts under high temperature. J Korean Soc Food Sci Nutr 34: 759-764. https://doi.org/10.3746/jkfn.2005.34.6.759
  20. Jeong CH, Choi SG, Heo HJ. 2008. Analysis of nutritional components and evaluation of functional activities of Sasa borealis leaf tea. Korean J Food Sci Technol 40: 586-592.
  21. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26: 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  22. Singh M, Dang TN, Arseneault M, Ramassamy C. 2010. Role of by-products of lipid oxidation in Alzheimer's disease brain: a focus on acrolein. J Alzheimers Dis 21: 741-756. https://doi.org/10.3233/JAD-2010-100405
  23. Tan X, Ryu HK. 2015. Effects of Dendropanax morbifera leaf extracts on lipid profiles in mice fed a high-fat and high-cholesterol diet. J Korean Soc Food Sci Nutr 44: 641-648. https://doi.org/10.3746/jkfn.2015.44.5.641
  24. Tangsaengvit N, Kitphati W, Tadtong S, Bunyapraphatsara N, Nukoolkarn V. 2013. Neurite outgrowth and neuroprotective effects of quercetin from Caesalpinia mimosoides Lamk. on cultured P19-derived neurons. J Evidence-Based Complementary Altern Med 2013: 838051.
  25. Zhao B. 2009. Natural antioxidants protect neurons in Alzheimer's disease and Parkinson's disease. Neurochem Res 34: 630-638. https://doi.org/10.1007/s11064-008-9900-9
  26. Park SE, Sapkota K, Choi JH, Kim MK, Kim YH, Kim KM, Kim KJ, Oh HN, Kim SJ, Kim S. 2014. Rutin from Dendropanax morbifera Leveille protects human dopaminergic cells against rotenone induced cell injury through inhibiting JNK and p38 MAPK signaling. Neurochem Res 39: 707-718. https://doi.org/10.1007/s11064-014-1259-5
  27. Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT. 2003. Mechanism of toxicity in rotenone models of Parkinson's disease. J Neurosci 23: 10756-10764. https://doi.org/10.1523/JNEUROSCI.23-34-10756.2003
  28. Hurst RD, Wells RW, Hurst SM, McGhie TK, Cooney JM, Jensen DJ. 2010. Blueberry fruit polyphenolics suppress oxidative stress-induced skeletal muscle cell damage in vitro. Mol Nutr Food Res 54: 353-363. https://doi.org/10.1002/mnfr.200900094
  29. Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C. 2005. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 18: CD003639.
  30. Phan CW, David P, Naidu M, Wong KH, Sabaratnam V. 2015. Therapeutic potential of culinary-medicinal mushrooms for the management of neurodegenerative diseases: diversity, metabolite, and mechanism. Crit Rev Biotechnol 35: 1-14. https://doi.org/10.3109/07388551.2013.793170
  31. Khan MT, Orhan I, Senol FS, Kartal M, Sener B, Dvorska M, Smejkal K, Slapetova T. 2009. Cholinesterase inhibitory activities of some flavonoid derivatives and chosen xanthone and their molecular docking studies. Chem Biol Interact 181: 383-389. https://doi.org/10.1016/j.cbi.2009.06.024
  32. Winkler J, Thal LJ, Gage FH, Fisher LJ. 1998. Cholinergic strategies for Alzheimer's disease. J Mol Med 76: 555-567. https://doi.org/10.1007/s001090050250
  33. Jung M, Tak J, Lee Y, Jung Y. 2007. Quantitative structureactivity relationship (QSAR) of tacrine derivatives against acetylcholinesterase (AChE) activity using variable selections. Bioorg Med Chem Lett 17: 1082-1090. https://doi.org/10.1016/j.bmcl.2006.11.022
  34. Patil SL, Mallaiah SH, Patil RK. 2013. Antioxidative and radioprotective potential of rutin and quercetin in Swiss albino mice exposed to gamma radiation. J Med Phys 38: 87-92. https://doi.org/10.4103/0971-6203.111321
  35. Yang Y, Bai L, Li X, Xiong J, Xu P, Guo C, Xue M. 2014. Transport of active flavonoids, based on cytotoxicity and lipophilicity: An evaluation using the blood-brain barrier cell and Caco-2 cell models. Toxicol In Vitro 28: 388-396. https://doi.org/10.1016/j.tiv.2013.12.002
  36. Yoo H, Ku SK, Baek YD, Bae JS. 2014. Anti-inflammatory effects of rutin on HMGB1-induced inflammatory responses in vitro and in vivo. Inflamm Res 63: 197-206. https://doi.org/10.1007/s00011-013-0689-x
  37. Tongjaroenbuangam W, Ruksee N, Chantiratikul P, Pakdeenarong N, Kongbuntad W, Govitrapong P. 2011. Neuroprotective effects of quercetin, rutin and okra (Abelmoschus esculentus Linn.) in dexamethasone-treated mice. Neurochem Int 59: 677-685. https://doi.org/10.1016/j.neuint.2011.06.014

Cited by

  1. 황칠(黃漆)이 만성 스트레스 유발 백서의 스트레스 및 수면 호르몬에 미치는 영향 vol.28, pp.3, 2016, https://doi.org/10.7231/jon.2017.28.3.287
  2. 활성 산소종으로 야기된 산화스트레스에 대한 와송 추출물의 신경세포 보호효과 및 주요 생리활성물질 vol.49, pp.5, 2017, https://doi.org/10.9721/kjfst.2017.49.5.524
  3. 황칠나무의 용매 분획별 추출물의 항산화 활성 및 Acetyl-cholinesterase 저해 활성비교 vol.31, pp.1, 2016, https://doi.org/10.7732/kjpr.2018.31.1.010
  4. 감 심지 에탄올 추출물의 항산화 활성 및 신경세포 보호 효과 vol.52, pp.1, 2016, https://doi.org/10.9721/kjfst.2020.52.1.60
  5. Dendropanax Morbiferus and Other Species from the Genus Dendropanax: Therapeutic Potential of Its Traditional Uses, Phytochemistry, and Pharmacology vol.9, pp.10, 2016, https://doi.org/10.3390/antiox9100962