DOI QR코드

DOI QR Code

Application of an empirical method to improve radar rainfall estimation using cross governmental dual-pol. radars

범부처 이중편파레이더의 강우 추정 향상을 위한 경험적 방법의 적용

  • Yoon, Jungsoo (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Suk, Mi-Kyung (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Nam, Kyung-Yeub (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration) ;
  • Park, Jong-Sook (Radar Analysis Division, Weather Radar Center, Korea Meteorological Administration)
  • 윤정수 (기상청 기상레이더센터 레이더분석과) ;
  • 석미경 (기상청 기상레이더센터 레이더분석과) ;
  • 남경엽 (기상청 기상레이더센터 레이더분석과) ;
  • 박종숙 (기상청 기상레이더센터 레이더분석과)
  • Received : 2016.03.29
  • Accepted : 2016.06.22
  • Published : 2016.07.30

Abstract

Three leading agencies under different ministries - Korea Meteorological Administration (KMA) in the ministry of Environment, Han river control office in the Ministry of Land, Infrastructure and Transport (MOLIT) and Weather Group of ROK Air Force in the Ministry of National Defense (MND) - have been operated radars in the purpose of observing weather, hydrology and military operational weather in Korea. Eight S-band dual-pol. radars have been newly installed or replaced by these ministries over different places by 2015. However each ministry has different aims of operating radars, observation strategies, data processing algorithms, etc. Due to the differences, there is a wide level of accuracy on observed radar data as well as the composite images made of the cross governmental radar measurement. Gaining fairly high level of accuracy on radar data obtained by different agencies has been shared as a great concern by the ministries. Thus, "an agreement of harmonizing weather and hydrological radar products" was made by the three ministries in 2010. Particularly, this is very important to produce better rainfall estimation using the cross governmental radar measurement. Weather Radar Center(WRC) in KMA has been developed an empirical method using measurements observed by Yongin testbed radar. This study is aiming to examine the efficiency of the empirical method to improve the accuracies of radar rainfalls estimated from cross governmental dual-pol. radar measurements. As a result, the radar rainfalls of three radars (Baengnyeongdo, Biseulsan, and, Sobaeksan Radar) were shown improvement in accuracy (1-NE) up to 70% using data from May to October in 2015. Also, the range of the accuracies in radar rainfall estimation, which were from 30% to 60% before adjusting polarimetric variables, were decreased from 65% to 70% after adjusting polarimetric variables.

기상청, 국토교통부 및 국방부는 각 기관의 특성에 맞게 기상, 수문 및 항공 관측용 레이더를 운영하고 있다. 2015년까지 국내에는 총 8대의 이중편파레이더(백령도, 용인테스트베드, 진도, 면봉산, 비슬산, 소백산, 모후산, 서대산 레이더)가 도입되어 운영되고 있다. 레이더를 운영 중인 세개 부처는 관측목적이 달라 레이더에 대한 운영방식, 자료 처리 방식 및 활용 방안 등에서 서로 많은 차이를 보여 왔으며 이러한 차이는 각 부처에서 운영하는 레이더 자료의 정확도가 달라지게 하는 원인이 되고 있다. 이에, 세 부처는 2010년 "기상-강우 레이더 자료 공동 활용에 관한 합의서"를 체결하고, 서로 다른 부처에서 생산된 모든 레이더 자료를 공동 활용하는 체계를 마련하였다. 범부처 이중편파레이더 자료의 합성을 위해서는 부처별 레이더 간의 정확도가 서로 유사해야한다. 서로간의 정확도가 다른 상태에서 레이더 강우 자료를 합성하게 된다면 공간적으로 품질이 다른 합성 강우장이 생산될 수밖에 없다. 이에 본 연구에서는 범부처 이중편파레이더 강우량의 정확도 향상과 통합을 위해 2015년도에 용인테스트베드 레이더에서 시행되었던 경험적 방법을 이용하였다. 그 결과 2015년 5월부터 10월까지의 백령도, 비슬산 및 소백산 레이더 자료에 대한 강우량 정확도(1-NE)가 70% 수준으로 향상되었다. 또한 레이더 편파변수 조절 전에는 정확도가 30~60%까지 넓은 범위를 보이고 있으나 조절 후 65~70%로 그 범위가 줄어들었다.

Keywords

References

  1. Aydin, K., Direskeneli, H., and Seliga, T.A. (1987). "Dual-Polarzation Radar Estimation of Rainfall Parameters Compared with Ground-Based Disdrometer Measurements: October 29, 1982 Central Illinois Expenment." IEEE Transactions on Geoscience and Remote Sensing, Vol. 25, No. 6, pp. 834-844.
  2. Aydin, K., Lure, Y.M., and Seliga, T.A. (1990). "Compared with ground-based rain gauges during MAYPOLE'84." IEEE Transactions on Geoscience and Remote Sensing, Vol. 28, No. 4, pp. 443-449. https://doi.org/10.1109/TGRS.1990.572914
  3. Aydin, K., Seliga, T.A., and Balaji, V. (1986). "Remote sensing of hail with a dual linear polarization radar." Journal of Climate and Applied Meteorology, Vol. 25, No. 10, pp. 1475-1484. https://doi.org/10.1175/1520-0450(1986)025<1475:RSOHWA>2.0.CO;2
  4. Atlas, D., and Ludlam, F.H. (1961). "Multi-wavelength radar reflectivity of hailstorms." Quarterly Journal of the Royal Meteorological Society, Vol. 87, No. 374, pp. 523-534. https://doi.org/10.1002/qj.49708737407
  5. Austin, P.M. (1987). "Relation between measured radar reflectivity and surface rainfall." Monthly Weather Review, Vol. 115, No. 5, pp. 1053-1070. https://doi.org/10.1175/1520-0493(1987)115<1053:RBMRRA>2.0.CO;2
  6. Battan, L.J. (1973). Radar observation of the atmosphere, University of Chicago Press, p. 324.
  7. Chandrasekar, V., Bringi, V.N., Balakrishnan, V.N., and Zrnic, D.S. (1990). "Error structure of multiparameter radar and surface measurements of rainfall. Part III: Specific differential phase." Journal of Atmospheric and Oceanic Technology, Vol. 7, No. 5, pp. 621-629. https://doi.org/10.1175/1520-0426(1990)007<0621:ESOMRA>2.0.CO;2
  8. Cifelli, R., Chandrasekar, V., Lim, S., Kennedy, P.C., Wang, Y., and Rutledge, S.A. (2011). "A new dual-polarization radar rainfall algorithm: application in Colorado precipitation events." Journal of Atmospheric and Oceanic Technology, Vol. 28, No. 3, pp. 352-364. https://doi.org/10.1175/2010JTECHA1488.1
  9. Eccles, P.J., and Atlas, D. (1973). "A dual-wavelength radar hail detector." Journal of Applied Meteorology, Vol. 12, No. 5, pp. 847-854. https://doi.org/10.1175/1520-0450(1973)012<0847:ADWRHD>2.0.CO;2
  10. Humphries, R.G. (1974). Depolarization effects at 3 GHz due to precipitation. Storm Weather Group Scientific Report MW-82, McGill University, Montreal, Quebec, p. 84.
  11. Jameson, A.R. (1985). "Microphysical interpretation of multiparameter radar measurements in rain. Part III: Interpretation and measurement of propagation differential phase shift between orthogonal linear polarizations." Jouranl of Atmospheric Sciences, Vol. 42, No. 6, pp. 607-614. https://doi.org/10.1175/1520-0469(1985)042<0607:MIOMRM>2.0.CO;2
  12. Leitao, M.J., and Watson, P.A. (1984). "Application of dual linearly polarized radar data to prediction of microwave path attenuation at 10-30 GHz." Radio Science, Vol. 19, No. 1, pp. 209-221. https://doi.org/10.1029/RS019i001p00209
  13. Marshall, J.S., and Palmer, W.M. (1948). "The distribution of raindrops with size." Journal of Meteorology, Vol. 5, No. 4, pp. 165-166. https://doi.org/10.1175/1520-0469(1948)005<0165:TDORWS>2.0.CO;2
  14. Ryzhkov, A.V., and Zrnic, D.S. (1995a). "Comparison of dual polarization radar estimators of rain." Journal of Amospheric and Oceanic Technology, Vol. 12, No. 2, pp. 249-256. https://doi.org/10.1175/1520-0426(1995)012<0249:CODPRE>2.0.CO;2
  15. Ryzhkov, A.V., and Zrnic, D.S. (1995b). "Precipitation and attenuation measurements at a 10-cm wavelength." Journal of Applied Meteorology, Vol. 34, No. 10, pp. 2121-2134. https://doi.org/10.1175/1520-0450(1995)034<2120:PAAMAA>2.0.CO;2
  16. Ryzhkov, A.V., and Zrnic, D.S. (1996). "Assessment of rainfall measurement that uses specific differential phase." Journal of Applied Meteorology, Vol. 35, No. 11, pp. 2080-2090. https://doi.org/10.1175/1520-0450(1996)035<2080:AORMTU>2.0.CO;2
  17. Sachidananda, M., and Zrnic, D.S. (1986). "Differential propagation phase shift and rainfall rate estimation." Radio Science, Vol. 21, No. 2, pp. 235-247. https://doi.org/10.1029/RS021i002p00235
  18. Scarchilli, G., Gorgucci, E., Chandrasekar, V., and Dobaie, A. (1996). "Self-consistency of polarization diversity measurement of rainfall." IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 1, pp. 22-26. https://doi.org/10.1109/36.481887
  19. Seliga, T.A., Aydin, K., and Direskeneli, H. (1986). "Disdrometer Measurements during an Intense Rainfall Event in Central Illinois_Implications for Differential Reflectivity Radar Observations." Journal of Climate and Applied Meteorology, Vol. 25, No. 6, pp. 835-846. https://doi.org/10.1175/1520-0450(1986)025<0835:DMDAIR>2.0.CO;2
  20. Seliga, T.A., and Bringi, V.N. (1976). "Potential use of radar differential reflectivity measurements at orthogonal polarization for measureing precipitation." Journal of Applied Meteorology, Vol. 15, No. 1, pp. 69-76. https://doi.org/10.1175/1520-0450(1976)015<0069:PUORDR>2.0.CO;2
  21. Straka, J.M., Zrnic, D.S., and Ryzhkov, A.V. (2000). "Bulk Hydrometeor Classification and Quantification Using Polarimetric Radar Data: Synthesis of Relations." Journal of Applied Meteorology, Vol. 39, No. 8, pp. 1341-1372. https://doi.org/10.1175/1520-0450(2000)039<1341:BHCAQU>2.0.CO;2
  22. Sulakvelidze, G.K. (1968). "Radar identification of hail." Proceedings 13th Radar Meteorology Conference, Montreal, American Meteorolgical Society.
  23. Weather Radar Center, (2014). Development and application of cross governmental dual-pol. radar harmonization, Seoul, Korea.
  24. Weather Radar Center, (2015). Development and application of cross governmental dual-pol. radar harmonization, Seoul, Korea.
  25. Zrnic, D.S., and Ryzhkov, A.V. (1999). "Polarimetry for weather surveillance radars." Bulletin of the American. Meteorological Society, Vol. 80, No. 3, pp. 389-406. https://doi.org/10.1175/1520-0477(1999)080<0389:PFWSR>2.0.CO;2

Cited by

  1. Quantitative Assessment on the Radar Rainfall of KICT X-band Daul-polarization Radar vol.18, pp.2, 2018, https://doi.org/10.9798/KOSHAM.2018.18.2.329
  2. Quantification of Error in Reflectivity for Improving the Accuracy of the Radar Rainfall Estimated from Single Polarization Radar vol.18, pp.5, 2018, https://doi.org/10.9798/KOSHAM.2018.18.5.255