DOI QR코드

DOI QR Code

Parametric Analysis for the Simultaneous Carbonation and Chloride Ion Penetration in Reinforced Concrete Sections

중성화와 염화물 침투가 동시에 발생하는 철근콘크리트 단면의 매개변수 분석

  • Received : 2016.05.10
  • Accepted : 2016.05.23
  • Published : 2016.09.01

Abstract

The objective of this study is the investigation of the influence of carbonation on the penetration of chloride ions in reinforced concrete sections for different mix proportions and environmental conditions. A comprehensive numerical model based on the change of the pore structure and the chemical equilibrium was used for this combined action of carbonation and chloride ingress. The empirical formulae of some parameters in this model are estimated according to numerous experimental data. And, a set of data analysis is carried out to simplify the estimation of model variables to reduce the computational cost. A coupled simulation of the transports of carbon dioxide, chloride ions, heat and moisture is carried out. Then, the parametric analysis is given and the numerical results show that the effect of carbonation of the free chloride ingress is significant and depends on the binder types and concrete mix proportion.

본 논문에서는 철근 콘크리트 단면에서 동시에 진행되는 중성화와 염화물 침투에 의해 진행되는 내구성 문제에 대해 서로 다른 콘크리트의 특성과 주변 환경의 영향을 매개변수 분석을 통해 수행하였다. 이를 위해 콘크리트의 미세 공극 구조의 변화 및 중성화와 염소이온 투과의 상호 화학반응이 직접 지배방정식 형태로 고려된 최신 모델을 사용하여 이 복합작용의 분석을 수행하였다. 이산화탄소, 염소이온, 열 및 수분의 복합적인 이동이 직접 고려되었다. 문헌상의 실험 데이터를 분석하여 모델의 입력변수를 결정하고 계산의 편의성을 증진시켰다. 이 모델을 상용유한요소 프로그램인 COMSOL의 사용자 모듈형태로 개발 하였다. 이 상호작용에 영향을 미치는 물-바인더비 (w/b), 골재-바인더비 (a/b), 플라이에쉬 함량, CSH 함량, 콘크리트 초기공극률 등을 정량적으로 분석하였다. 결과에 의하면, 중성화와 염소이온 침투의 상호작용은 다양한 재료 물성치에 영향을 받는다.

Keywords

References

  1. Backus, J., Mcpolin D., Basheer, M., Long, A., and Holmes, N. (2013), Exposure of Mortars to Cyclic Chloride Ingress and Carbonation, Advances in Cement Research, 25(1), 3-11. https://doi.org/10.1680/adcr.12.00029
  2. Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P. H., and Schoefs, F. (2011), A Comprehensive Probabilistic Model of Chloride Ingress in Unsaturated Concrete, Engineering Structures, 33(3), 720-730. https://doi.org/10.1016/j.engstruct.2010.11.008
  3. Bazant, Z., and Najjar, L. (1971), Drying of Concrete as a Nonlinear Diffusion Problem, Cement and Concrete Research, 1(5), 461-473. https://doi.org/10.1016/0008-8846(71)90054-8
  4. Bazant, Z., and Najjar, L. (1972), Nonlinear Water Diffusion in Nonsaturated Concrete, Materials and Structures, 5(1), 546-552.
  5. Chindaprasirt, P., and Rukzon, S. (2009), Pore Structure Changes of Blended Cement Pastes Containing Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash Caused by Carbonation, Journal of Materials in civil Engineering, ASCE, 21(11), 666-671. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:11(666)
  6. Delnavaz, A., and Ramezanianpour, A. (2012), The Assessment of Carbonation Effect on Chloride Diffusion in Concrete Based on Artificial Neural Network Model, Magazine of Concrete Research, 64(10), 877-884. https://doi.org/10.1680/macr.11.00059
  7. Dong, B., Qiu, Q., Xiang, J., Huang, C., Xing, F., Han, N., and Lu, Y. (2014), Electrochemical Impedance Measurement and Modeling Analysis of the Carbonation Behavior for Cementititous Materials, Construction and Building Materials, 54, 558-565. https://doi.org/10.1016/j.conbuildmat.2013.12.100
  8. Gerven, T., Cornelis, G., Vandoren, E., and Vandecasteele, C. (2007), Effects of Carbonation and Leaching on Porosity in Cement-Bound Waste, Waste Management, 27(7), 977-985. https://doi.org/10.1016/j.wasman.2006.05.008
  9. Ishida, T., Iqbal, P., and Anh, H. (2009), Modeling of Chloride Diffusivity Coupled with Non-Linear Binding Capacity in Sound and Cracked Concrete, Cement and Concrete Research, 39(10), 913-923. https://doi.org/10.1016/j.cemconres.2009.07.014
  10. Lee, M., Jung, S., and Oh, B. (2013), Effects of Carbonation on Chloride Penetration in Concrete, ACI Materials Journal, 110(5), 559-566.
  11. Martin-Perez, B., Pantazopoulou, S., and Thomas, M. (2001), Numerical Solution of Mass Transport Equations in Concrete Structures, Computers and Structures, 79(13), 1251-1264. https://doi.org/10.1016/S0045-7949(01)00018-9
  12. Metalssi, O., Ait-Mokhtar, A., Turcry, P., and Ruot, B. (2012), Consequences of Carbonation on Microstructure and Drying Shrinkage of a Mortar with Cellulose Ether, Construction and Building Materials, 34, 218-225. https://doi.org/10.1016/j.conbuildmat.2012.02.044
  13. Morandeau, A., Thiery, M., and Dangla, P. (2014), Investigation of the Carbonation Mechanism of CH and C-S-H in Terms of Kinetics, microstructure changes and moisture properties, Cement and Concrete Research, 56, 153-170. https://doi.org/10.1016/j.cemconres.2013.11.015
  14. Morandeau, A., Thiery, M., and Dangla, P. (2015), Impact of Accelerated Carbonation on OPC Cement Paste Blended with Fly Ash, Cement and Concrete Research, 67, 226-236. https://doi.org/10.1016/j.cemconres.2014.10.003
  15. Nakarai, K., Ishida, T., and Maekawa, K. (2006), Multi-Scale Physicochemical Modeling of Soil Cementitious Material Interaction, Soils and Foundations, 46(5), 653-663. https://doi.org/10.3208/sandf.46.653
  16. Ngala, V., and Page, C. (1997), Effects of Carbonation on Pore Structure and Diffusional Properties of Hydrated Cement Pastes, Cement and Concrete Research, 27(7), 995-1007. https://doi.org/10.1016/S0008-8846(97)00102-6
  17. Niu, D., Chen, L., and Zhang, C. (2007), Computational Model of Gas Diffusion Coefficient in Concrete, Journal of Xian University of Architecture and Technology (Natural Science Edition), 39(6), 741-745.
  18. Papadakis, V., Vayenas, C., and Fardis, M. (1989), A Reaction Engineering Approach to the Problem of Concrete Carbonation, Journal of the American Institute of Chemical Engineers, 35(10), 1639-1650. https://doi.org/10.1002/aic.690351008
  19. Papadakis, V., Vayenas, C., and Fardis, M. (1991), Fundamental Modeling and Experimental Investigation of Concrete Carbonation, ACI Materials Journal, 88(4), 363-373.
  20. Papadakis, V., Vayenas, C., and Fardis, M. (1991), Physical and Chemical Characteristics Affecting the Durability of Concrete, ACI Materials Journal, 88(2), 186-196.
  21. Pham, S. (2014), Effects of Carbonation on the Microporosity and Macro Properties of Portland Cement Mortar CEM I, Journal of Materials Science and Chemical Engineering, 2(7), 40-52. https://doi.org/10.4236/msce.2014.27005
  22. Phung, Q., Maes, N., Jacques, D., Bruneel, E., Driessche, I., Ye, G., and Schutter, G. (2015), Effect of Limestone Fillers on Microstructure and Permeability Due to Carbonation of Cement Pastes Under Controlled co2 Pressure Conditions, Construction and Building Materials, 82, 376-390. https://doi.org/10.1016/j.conbuildmat.2015.02.093
  23. Pizzol, V., Mendes, L., Frezzatti, L., Jr., H. S., and Tonoli, G. (2014), Effect of Accelerated Carbonation on the Microstructure and Physical Properties of Hybrid Fiber-Cement Composites, Minerals Engineering, 59, 101-106. https://doi.org/10.1016/j.mineng.2013.11.007
  24. Puatatsananon, W., and Saouma, V. (2005), Nonlinear Coupling of Carbonation and Chloride Diffusion in Concrete, Journal of Materials in Civil Engineering, ASCE, 17(3), 264-275. https://doi.org/10.1061/(ASCE)0899-1561(2005)17:3(264)
  25. Rukzon, S., and Chindaprasirt, P. (2010), Strength and Carbonation Model of Rice Husk Ash Cement Mortar with Different Fineness, Journal of Materials in civil Engineering, ASCE, 22(3), 253-259. https://doi.org/10.1061/(ASCE)0899-1561(2010)22:3(253)
  26. Saetta, A., and Vitaliani, R. (2004), Experimental Investigation and Numerical Modeling of Carbonation Process in Reinforced Concrete Structures Part I: Theoretical Formulation, Cement and Concrete Research, 34(4), 571-579. https://doi.org/10.1016/j.cemconres.2003.09.009
  27. Saetta, A., Scotta, R., and Vitaliani, R. (1993), Analysis of Chloride Diffusion Into Partially Saturated Concrete, ACI Materials Journal, 90(5), 441-451.
  28. Thiery, M., Baroghel-Bouny, V., Morandeau, A., and Dangla, P. (2012), Impact of Carbonation on the Microstructure and Transfer Properties of Cementbased Materials, Transfert, Ecole Centrale de Lille, pp. 1-10.
  29. Tolentino, E., Lanmeiras, F., Gomes, A., Silva, C., and Vasconcelos, W. (2002), Effects of High Temperature on the Residual Performance of Portland Cement Concretes, Materials Research, 5(3), 301-307. https://doi.org/10.1590/S1516-14392002000300014
  30. Tumidajski, P., and Chan, G. (1996), Effect of Sulfate and Carbon Dioxide on Chloride Diffusivity, Cement and Concrete Research, 26(4), 551-556. https://doi.org/10.1016/0008-8846(96)00019-1
  31. Villain, G., and Thiery, M. (2005), Impact of Carbonation on the Microstructure and Transport Properties of Concrete, 10DBMC International Conference On Durability of Building Materials and Components, LYON (France), pp. 17-20.
  32. Yoon, I. (2007), Deterioration of Concrete Due to Combined Reaction of Carbonation and Chloride Penetration: Experimental Study, Key Engineering Materials, 348-349, 729-732. https://doi.org/10.4028/www.scientific.net/KEM.348-349.729
  33. Yoon, I. (2009), Simple Approach to Calculate Chloride Diffusivity of Concrete Considering Carbonation, Computers and Concrete, 6(1), 1-18. https://doi.org/10.12989/cac.2009.6.1.001
  34. Younsi, A., Turcry, P., Roziere, E., Ait-Mokhtar, A., and Loukili, A. (2011), Performance-Based Design and Carbonation of Concrete with High Fly Ash Content, Cement and Concrete Composites, 33(10), 993-1000. https://doi.org/10.1016/j.cemconcomp.2011.07.005
  35. Yuan, C., Niu, D., and Luo, D. (2012), Effect of Carbonation on Chloride Diffusion in Fly Ash Concrete, Computers and Concrete, 5(4), 312-316.
  36. Yuan, C., Niu, D., Chen, N., and Duan, F. (2013), Influence of Carbonation on the Microstructure of Concrete, Bulletin of the Chinese Ceramic Society, 32(4), 687-691 (in Chinese, with English abstract).
  37. Zhu, X. J., Zi, G., Cao, Z., and Cheng, X. (2016), Combined Effect of Carbonation and Chloride Ingress in Concrete, Construction and Building Materials, 110, 369-380. https://doi.org/10.1016/j.conbuildmat.2016.02.034

Cited by

  1. Ingress of chloride ions with carbonation: parameter estimation and analytical simplification pp.2116-7214, 2018, https://doi.org/10.1080/19648189.2018.1528894
  2. A simplified probabilistic model for the combined action of carbonation and chloride ingress vol.71, pp.7, 2019, https://doi.org/10.1680/jmacr.18.00140