DOI QR코드

DOI QR Code

Microtensile bond strength and micromorphologic analysis of surface-treated resin nanoceramics

  • Park, Joon-Ho (Department of Prosthodontics, College of Dentistry, Dankook University) ;
  • Choi, Yu-Sung (Department of Prosthodontics, College of Dentistry, Dankook University)
  • Received : 2016.05.23
  • Accepted : 2016.08.10
  • Published : 2016.08.31

Abstract

PURPOSE. The aim of this study was to evaluate the influence of different surface treatment methods on the microtensile bond strength of resin cement to resin nanoceramic (RNC). MATERIALS AND METHODS. RNC onlays (Lava Ultimate) (n=30) were treated using air abrasion with and without a universal adhesive, or HF etching followed by a universal adhesive with and without a silane coupling agent, or tribological silica coating with and without a universal adhesive, and divided into 6 groups. Onlays were luted with resin cement to dentin surfaces. A microtensile bond strength test was performed and evaluated by one-way ANOVA and Tukey HSD test (${\alpha}$=.05). A nanoscratch test, field emission scanning electron microscopy, and energy dispersive X-ray spectroscopy were used for micromorphologic analysis (${\alpha}$=.05). The roughness and elemental proportion were evaluated by Kruskal-Wallis test and Mann-Whitney U test. RESULTS. Tribological silica coating showed the highest roughness, followed by air abrasion and HF etching. After HF etching, the RNC surface presented a decrease in oxygen, silicon, and zirconium ratio with increasing carbon ratio. Air abrasion with universal adhesive showed the highest bond strength followed by tribological silica coating with universal adhesive. HF etching with universal adhesive showed the lowest bond strength. CONCLUSION. An improved understanding of the effect of surface treatment of RNC could enhance the durability of resin bonding when used for indirect restorations. When using RNC for restoration, effective and systemic surface roughening methods and an appropriate adhesive are required.

Keywords

References

  1. Alt V, Hannig M, WOstmann B, Balkenhol M. Fracture strength of temporary fixed partial dentures: CAD/CAM versus directly fabricated restorations. Dent Mater 2011;27:339-47. https://doi.org/10.1016/j.dental.2010.11.012
  2. Schoenbaum TR. Dentistry in the digital age: an update. Dent Today 2012;31:108, 110, 112-3.
  3. Poticny DJ, Klim J. CAD/CAM in-office technology: innovations after 25 years for predictable, esthetic outcomes. J Am Dent Assoc 2010;141:5S-9S. https://doi.org/10.14219/jada.archive.2010.0356
  4. Stawarczyk B, Ender A, Trottmann A, Ozcan M, Fischer J, Hämmerle CH. Load-bearing capacity of CAD/CAM milled polymeric three-unit fixed dental prostheses: effect of aging regimens. Clin Oral Investig 2012;16:1669-77. https://doi.org/10.1007/s00784-011-0670-4
  5. Tinschert J, Zwez D, Marx R, Anusavice KJ. Structural reliability of alumina-, feldspar-, leucite-, mica- and zirconiabased ceramics. J Dent 2000;28:529-35. https://doi.org/10.1016/S0300-5712(00)00030-0
  6. Stawarczyk B, Sener B, Trottmann A, Roos M, Ozcan M, Hammerle CH. Discoloration of manually fabricated resins and industrially fabricated CAD/CAM blocks versus glassceramic: effect of storage media, duration, and subsequent polishing. Dent Mater J 2012;31:377-83. https://doi.org/10.4012/dmj.2011-238
  7. Stawarczyk B, Ozcan M, Trottmann A, Schmutz F, Roos M, Hammerle C. Two-body wear rate of CAD/CAM resin blocks and their enamel antagonists. J Prosthet Dent 2013;109:325-32. https://doi.org/10.1016/S0022-3913(13)60309-1
  8. Luthardt RG, Holzhüter MS, Rudolph H, Herold V, Walter MH. CAD/CAM-machining effects on Y-TZP zirconia. Dent Mater 2004;20:655-62. https://doi.org/10.1016/j.dental.2003.08.007
  9. Lin WS, Ercoli C, Feng C, Morton D. The effect of core material, veneering porcelain, and fabrication technique on the biaxial flexural strength and weibull analysis of selected dental ceramics. J Prosthodont 2012;21:353-62. https://doi.org/10.1111/j.1532-849X.2012.00845.x
  10. Addison O, Cao X, Sunnar P, Fleming GJ. Machining variability impacts on the strength of a CAD-CAM ceramic. Dent Mater 2012;28:880-7. https://doi.org/10.1016/j.dental.2012.04.017
  11. El Zohairy AA, De Gee AJ, Mohsen MM, Feilzer AJ. Microtensile bond strength testing of luting cements to prefabricated CAD/CAM ceramic and composite blocks. Dent Mater 2003;19:575-83. https://doi.org/10.1016/S0109-5641(02)00107-0
  12. 3M ESPE. Lava ultimate technical product profile: 2011. Available at: http://multimedia.3m.com/mws/media/781394O/lava-ultimate-technical-product-profile golbal.pdf
  13. Chen C, Trindade FZ, de Jager N, Kleverlaan CJ, Feilzer AJ. The fracture resistance of a CAD/CAM Resin Nano Ceramic (RNC) and a CAD ceramic at different thicknesses. Dent Mater 2014;30:954-62. https://doi.org/10.1016/j.dental.2014.05.018
  14. Joda T, Huber S, Bürki A, Zysset P, Bragger U. Influence of Abutment Design on Stiffness, Strength, and Failure of Implant-Supported Monolithic Resin Nano Ceramic (RNC) Crowns. Clin Implant Dent Relat Res 2015;17:1200-7. https://doi.org/10.1111/cid.12215
  15. Vargas MA, Bergeron C, Diaz-Arnold A. Cementing all-ceramic restorations: recommendations for success. J Am Dent Assoc 2011;142:20S-4S. https://doi.org/10.14219/jada.archive.2011.0339
  16. Spitznagel FA, Horvath SD, Guess PC, Blatz MB. Resin bond to indirect composite and new ceramic/polymer materials: a review of the literature. J Esthet Restor Dent 2014;26:382-93. https://doi.org/10.1111/jerd.12100
  17. el-Mowafy O. The use of resin cements in restorative dentistry to overcome retention problems. J Can Dent Assoc 2001;67:97-102.
  18. Sorensen JA, Kang SK, Avera SP. Porcelain-composite interface microleakage with various porcelain surface treatments. Dent Mater 1991;7:118-23. https://doi.org/10.1016/0109-5641(91)90057-6
  19. Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other non-silicate ceramics: where are we now? Dent Mater 2011;27:71-82. https://doi.org/10.1016/j.dental.2010.10.022
  20. Semmelman JO, Kulp PR. Silane bonding porcelain teeth to acrylic. J Am Dent Assoc 1968;76:69-73. https://doi.org/10.14219/jada.archive.1968.0017
  21. Jochen DG, Caputo AA. Composite resin repair of porcelain denture teeth. J Prosthet Dent 1977;38:673-9. https://doi.org/10.1016/0022-3913(77)90013-0
  22. Ferrando JM, Graser GN, Tallents RH, Jarvis RH. Tensile strength and microleakage of porcelain repair materials. J Prosthet Dent 1983;50:44-50. https://doi.org/10.1016/0022-3913(83)90164-6
  23. Blatz MB, Sadan A, Kern M. Resin-ceramic bonding: a review of the literature. J Prosthet Dent 2003;89:268-74. https://doi.org/10.1067/mpr.2003.50
  24. Ozcan M. Evaluation of alternative intra-oral repair techniques for fractured ceramic-fused-to-metal restorations. J Oral Rehabil 2003;30:194-203. https://doi.org/10.1046/j.1365-2842.2003.01037.x
  25. Amaral R, Ozcan M, Bottino MA, Valandro LF. Microtensile bond strength of a resin cement to glass infiltrated zirconiareinforced ceramic: the effect of surface conditioning. Dent Mater 2006;22:283-90. https://doi.org/10.1016/j.dental.2005.04.021
  26. Ozcan M. The use of chairside silica coating for different dental applications: a clinical report. J Prosthet Dent 2002;87:469-72. https://doi.org/10.1067/mpr.2002.124365
  27. Bailey LF, Bennett RJ. DICOR surface treatments for enhanced bonding. J Dent Res 1988;67:925-31. https://doi.org/10.1177/00220345880670060701
  28. Egilmez F, Ergun G, Cekic-Nagas I, Vallittu PK, Ozcan M, Lassila LV. Effect of surface modification on the bond strength between zirconia and resin cement. J Prosthodont 2013;22:529-36. https://doi.org/10.1111/jopr.12030
  29. Sorensen JA, Engelman MJ, Torres TJ, Avera SP. Shear bond strength of composite resin to porcelain. Int J Prosthodont 1991;4:17-23.
  30. Chen JH, Matsumura H, Atsuta M. Effect of different etching periods on the bond strength of a composite resin to a machinable porcelain. J Dent 1998;26:53-8. https://doi.org/10.1016/S0300-5712(96)00078-4
  31. Chen JH, Matsumura H, Atsuta M. Effect of etchant, etching period, and silane priming on bond strength to porcelain of composite resin. Oper Dent 1998;23:250-7.
  32. Szep S, Gerhardt T, Gockel HW, Ruppel M, Metzeltin D, Heidemann D. In vitro dentinal surface reaction of 9.5% buffered hydrofluoric acid in repair of ceramic restorations: a scanning electron microscopic investigation. J Prosthet Dent 2000;83:668-74. https://doi.org/10.1067/mpr.2000.106873
  33. Braga RR, Meira JB, Boaro LC, Xavier TA. Adhesion to tooth structure: a critical review of "macro" test methods. Dent Mater 2010;26:e38-49.
  34. Scherrer SS, Cesar PF, Swain MV. Direct comparison of the bond strength results of the different test methods: a critical literature review. Dent Mater 2010;26:e78-93.
  35. Papia E, Larsson C, du Toit M, Vult von Steyern P. Bonding between oxide ceramics and adhesive cement systems: a systematic review. J Biomed Mater Res B Appl Biomater 2014;102:395-413. https://doi.org/10.1002/jbm.b.33013
  36. Sano H, Shono T, Sonoda H, Takatsu T, Ciucchi B, Carvalho R, Pashley DH. Relationship between surface area for adhesion and tensile bond strength-evaluation of a micro-tensile bond test. Dent Mater 1994;10:236-40. https://doi.org/10.1016/0109-5641(94)90067-1
  37. Pashley DH, Carvalho RM, Sano H, Nakajima M, Yoshiyama M, Shono Y, Fernandes CA, Tay F. The microtensile bond test: a review. J Adhes Dent 1999;1:299-309.
  38. Blatz MB, Phark JH, Ozer F, Mante FK, Saleh N, Bergler M, Sadan A. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. Clin Oral Investig 2010;14:187-92. https://doi.org/10.1007/s00784-009-0278-0
  39. Soares CJ, Soares PV, Pereira JC, Fonseca RB. Surface treatment protocols in the cementation process of ceramic and laboratory-processed composite restorations: a literature review. J Esthet Restor Dent 2005;17:224-35. https://doi.org/10.1111/j.1708-8240.2005.tb00119.x
  40. Borges GA, Sophr AM, de Goes MF, Sobrinho LC, Chan DC. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics. J Prosthet Dent 2003;89:479-88. https://doi.org/10.1016/S0022-3913(02)52704-9
  41. Swift EJ Jr, Brodeur C, Cvitko E, Pires JA. Treatment of composite surfaces for indirect bonding. Dent Mater 1992;8:193-6. https://doi.org/10.1016/0109-5641(92)90082-N
  42. Kern M, Thompson VP. Sandblasting and silica coating of a glass-infiltrated alumina ceramic: volume loss, morphology, and changes in the surface composition. J Prosthet Dent 1994;71:453-61. https://doi.org/10.1016/0022-3913(94)90182-1
  43. Hantsche H. Comparison of basic principles of the surfacespecific analytical methods: AES/SAM, ESCA (XPS), SIMS, and ISS with X-ray microanalysis, and some applications in research and industry. Scanning 1989;11:257-80. https://doi.org/10.1002/sca.4950110602
  44. Pashley DH, Sano H, Ciucchi B, Yoshiyama M, Carvalho RM. Adhesion testing of dentin bonding agents: a review. Dent Mater 1995;11:117-25. https://doi.org/10.1016/0109-5641(95)80046-8
  45. Imamura GM, Reinhardt JW, Boyer DB, Swift EJ Jr. Enhancement of resin bonding to heat-cured composite resin. Oper Dent 1996;21:249-56.
  46. Janda R, Roulet JF, Wulf M, Tiller HJ. A new adhesive technology for all-ceramics. Dent Mater 2003;19:567-73. https://doi.org/10.1016/S0109-5641(02)00106-9
  47. Stawarczyk B, Krawczuk A, Ilie N. Tensile bond strength of resin composite repair in vitro using different surface preparation conditionings to an aged CAD/CAM resin nanoceramic. Clin Oral Investig 2015;19:299-308. https://doi.org/10.1007/s00784-014-1269-3
  48. D’Arcangelo C, Vanini L. Effect of three surface treatments on the adhesive properties of indirect composite restorations. J Adhes Dent 2007;9:319-26.
  49. Behr M, Proff P, Kolbeck C, Langrieger S, Kunze J, Handel G, Rosentritt M. The bond strength of the resin-to-zirconia interface using different bonding concepts. J Mech Behav Biomed Mater 2011;4:2-8. https://doi.org/10.1016/j.jmbbm.2010.08.002
  50. Lebon N, Tapie L, Vennat E, Mawussi B. Influence of CAD/CAM tool and material on tool wear and roughness of dental prostheses after milling. J Prosthet Dent 2015;114:236-47. https://doi.org/10.1016/j.prosdent.2014.12.021

Cited by

  1. Effect of alumina-blasting pressure on adhesion of CAD/CAM resin block to dentin vol.37, pp.5, 2018, https://doi.org/10.4012/dmj.2017-237
  2. Microtensile bond strengths of adhesively bonded polymer-based CAD/CAM materials to dentin pp.1881-1361, 2019, https://doi.org/10.4012/dmj.2017-442
  3. Roughness, surface energy, and superficial damages of CAD/CAM materials after surface treatment vol.22, pp.8, 2018, https://doi.org/10.1007/s00784-018-2365-6
  4. Surface deterioration of monolithic CAD/CAM restorative materials after artificial abrasive toothbrushing vol.10, pp.4, 2018, https://doi.org/10.4047/jap.2018.10.4.271
  5. Effect of Different Surface Treatment Methods on Micro-Shear Bond Strength of CAD-CAM Restorative Materials to Resin Cement. vol.33, pp.2, 2019, https://doi.org/10.1080/01694243.2018.1514992
  6. Dental Cements for Luting and Bonding Restorations vol.61, pp.4, 2017, https://doi.org/10.1016/j.cden.2017.06.006
  7. Adhesive Systems Used in Indirect Restorations Cementation: Review of the Literature vol.7, pp.3, 2019, https://doi.org/10.3390/dj7030071
  8. Bonding Strength of Universal Adhesives to Indirect Substrates: A Meta‐Analysis of in Vitro Studies vol.29, pp.4, 2016, https://doi.org/10.1111/jopr.13147
  9. Repair bond strength of resin composite to three aged CAD/CAM blocks using different repair systems vol.12, pp.3, 2020, https://doi.org/10.4047/jap.2020.12.3.131
  10. Influence of surface treatment on bonding of resin luting cement to CAD/CAM composite blocks vol.39, pp.5, 2016, https://doi.org/10.4012/dmj.2019-247
  11. Influence of Low-Pressure Plasma on the Surface Properties of CAD-CAM Leucite-Reinforced Feldspar and Resin Matrix Ceramics vol.10, pp.24, 2016, https://doi.org/10.3390/app10248856
  12. Effect of Different Surface Treatment Methods on Bond Strength of Dental Ceramics to Dental Hard Tissues: A Systematic Review vol.26, pp.5, 2021, https://doi.org/10.3390/molecules26051223
  13. Effect of Two Immediate Dentin Sealing Approaches on Bond Strength of Lava™ CAD/CAM Indirect Restoration vol.14, pp.7, 2016, https://doi.org/10.3390/ma14071629
  14. Comparison of Mechanical Properties of Chairside CAD/CAM Restorations Fabricated Using a Standardization Method vol.14, pp.11, 2021, https://doi.org/10.3390/ma14113115
  15. Shear‐bond strength and optical properties of short fiber‐reinforced CAD/CAM composite blocks vol.129, pp.5, 2016, https://doi.org/10.1111/eos.12815