DOI QR코드

DOI QR Code

Calculation of the Eco-Design Index for Components of the Multi-function Printer

공용 복합기 출력 기능 소모품들의 Eco Design Index 산정

  • Lee, Joo-Young (Environmental Engineering Department, Ajou University) ;
  • Lee, Jong-Seok (Environmental Engineering Department, Ajou University) ;
  • Kim, Jong-Min (Korea National Cleaner Production Center) ;
  • Lee, Kun-Mo (Environmental Engineering Department, Ajou University)
  • Received : 2015.10.05
  • Accepted : 2016.04.11
  • Published : 2016.06.30

Abstract

Conventional eco-design has been implemented based only on the environmental aspects of a product. Key components of a product identified from the analysis of the environmental aspects have been the target for improvement in the conventional eco-design. The use of eco-design index (EDI) considering both the environmental and economic aspects, and utility value (UV) of a product can be envisaged as an alternative way of implementing and assessing the eco-design. The objective of this study was to propose the logic of the EDI and apply it to the components for performing printing function of the multi-function printer. The EDI was formulated by quantifying the UV, life cycle environmental impact (LCE) and life cycle cost (LCC) of the components of a product, here components of the printer. Of the eight components investigated, roller was identified as the best performing consumable in both the environmental and economic aspects. However, its UV was the lowest among the eight. The EDI of the roller was mere $4^{th}$ in ranking out of the eight. Transfer belt ranked $8^{th}$ and $5^{th}$ in the environmental and economic aspects, respectively, while $2^{nd}$ in the utility value with its EDI ranked $3^{rd}$. This indicates that not only the environmental aspects but also economic and utility value aspects should be considered when identifying the key components for improvement in the eco-design.

기존의 에코디자인은 제품의 환경성 측면만을 고려하여 수행하였다. 이는 에코디자인 수행 시 제품의 환경측면 분석을 통해 파악된 주요 부품이 개선 대상이었다는 것을 의미한다. 나아가 최근 경제성 측면까지 고려하여 에코디자인을 수행하고 있는데, 이는 주로 공급자의 입장이 반영된 에코디자인이며, 소비자의 입장이 제대로 반영된 에코디자인이라고 보기 힘들다. 따라서 소비자의 입장에서 얻을 수 있는 가치에 대한 지표인 UV (Utility Value)를 고려한 새로운 에코디자인이 필요하다. 따라서, 환경적 측면뿐만 아니라 제품의 경제적 측면과 소비자효용가치(Utility value, UV) 적 측면을 동시에 고려한 에코디자인 지수(Eco-Design Index, EDI) 는 에코디자인을 평가하는 새로운 대안이 될 수 있다. 이 연구의 목적은 제품의 환경성, 경제성 및 소비자효용가치를 고려하여 에코디자인 지수의 로직(Logic)을 제안하고, 이를 공용 복합기의 출력 기능을 수행하는 부품에 적용하여 그 의의를 알아보고자 하는 것이다. 이는, 공용 복합기 부품들의 Utility Value (UV), Life Cycle environmental impact (LCE), 및 Life Cycle Cost (LCC) 값을 정량화하여 EDI를 산정한 뒤, 이를 토대로 에코디자인의 개선대상이 되는 부품을 파악하는 에코디자인의 새로운 접근방법을 제시하는 것이다. 이 연구의 대상 제품인 8가지의 부품 중 롤러의 경우 환경성과 경제성 측면에서 가장 우수한 부품으로 나타났지만 UV 값은 8개 부품들 중 가장 낮았다. 롤러의 EDI 순위는 8개 부품 중 4위에 불과했다. 전사벨트는 환경성과 경제성 측면에서 각각 8위와 5위를 나타낸 반면, UV 값이 2번째로 높게 산정되어, EDI 순위는 8개 중 3위였다. 이것은 에코디자인 정도를 평가할 때에 환경성뿐만 아니라 경제성과 UV 측면 또한 반드시 고려해야 한다는 것을 의미한다.

Keywords

References

  1. Wimmer, W., Zust, R. and Lee, K.-M., "Ecodesign Implementation : A systematic Guidance on Integrating Environmental Considerations into Product Development," Springer, German (2004).
  2. Wimmer, W., Lee, K.-M., Quella, F. and Polak, J., ECODESIGN- The Competitive Advantage, Springer, Heidelberg (2010).
  3. IEC 62430 Ed. 1.0, Environmentally conscious design for electrical and electronic products, IEC, Geneva(2009).
  4. Umeda, Y., Nishioka, T., Fukushige, S., Kondoh, S. and Takata, S., "Proposal of Idea Generation Support Methodology for Eco-Business, Manufacturing Systems and Technologies for the New Frontier," Proceedings of the 41st CIRP conference, pp. 501-506, Tokyo, Japan(2008).
  5. Nakamura, N., Mandai, K., Fukushige, S. and Umeda, Y., "Proposal of a methodology for supporting generation of new eco-business ideas. Design for Innovation Value Towards a Sustainable Society," Proceedings of EcoDesign 2011, pp. 451-456, Tokyo, Japan(2012).
  6. Chun, Y.-Y. and Lee, K.-M., "Life Cycle-Based Generic Business Strategies for Sustainable Business Models," J. Sustainable Development, 6(8), 1-15(2013).
  7. Mont, O. and Plepys, A., "What is behind meager attempts to sustainable consumption? Institutional and product-service system perspective," In International Workshop on Driving Forces of and Barriers to Sustainable Consumption, pp. 5-6 March, Leeds, UK(2004).
  8. Xerox, Life Cycle Assessment of a Solid Ink Printer Compared with a Color Laser Printer-Total Lifetime Energy Investment and Global Warming Impact, p. 2-8(2010).
  9. Rothenberg, S., Selling small and smart: The future of the sustainable enterprise. A Research Monograph of the Printing Industry Center at RIT, A Joint Project with the International Motor Vehicle Program at MIT Working Paper No. PICRM-2004-01(2004).
  10. Rothenberg, S., "Sustainability through Servicizing," MIT Sloan Manage. Rev., 48(2), 83-91(2007).
  11. Kondoh, S. Masuit, K., Hattori, M., Mishima, N. and Matsumoto, M., "Total performance analysis of product life cycle considering the deterioration and obsolescence of product value," J. Product Development, 6(3/4), 334-352(2008). https://doi.org/10.1504/IJPD.2008.020399
  12. Ajou University, Eco-Design Index Guide Line, Ajou University, Korea (2014).
  13. Ajou University, Technology Innovation Business for Knowledge Economy [Industrial Technology & policy support business] annual report, Development of Green Design Index, Korea National Cleaner Production Center, Korea(2013).
  14. Lee, K.-M., "Product Life Cycle Assessment (PLCA) and Product Carbon Footprint (PCF)," Handbook of Sustainable Engineering Volume 1, Springer (edited by Kauffman J. and Lee, K.-M., 22, 371-388(2013).
  15. Lee, K.-M., Life Cycle Assessment: Best Practices of International Organization for Standardization (ISO) 14040 Series, APEC(2004).
  16. ISO, ISO 14040: Environmental management - Life cycle assessment - Principles and framework, ISO/TC 207/SC 5 (2006).
  17. ISO, ISO 14044: Environmental management - Life cycle assessment - Requirements and guidelines, ISO/TC 207/SC 5 (2006).
  18. Asiedu, Y. and Gu, P., "Product Life cycle cost analysis : state of the art review," International J. Production Res., 36, 883-908(1998). https://doi.org/10.1080/002075498193444
  19. Park., S. K., Kim, C. J. and Park., I. S., "A Case Study on Product Life Cycle Cost," Korean Academy of Commodity Sci. Technol., 30, 207-226(2003).
  20. Schau, E. M., Traverso, M., Lehmann, A. and Finkbeiner, M., "Life Cycle Costing in Sustainability Assessment - A case Study of Remanufactured Alternators," Sustainability, 3(11), 2268-2288(2011). https://doi.org/10.3390/su3112268
  21. Ministry of Environment, Korea Environment Corporation, 2011 Current state of Waste occurrence & disposal in Korea, pp. 56-73(2012).
  22. Korea Environmental Industry & Technology Institute (KEITI), The webpage of carbon footprint label, www.edp.or.kr/information/data.asp?bbs_code=6&mode=view&bbs_idx=1155, September (2012).
  23. Alberola, E., Chevallier, J. and Cheze, B., "Price drivers and structural breaks in European carbon prices 2005-2007," Energy Policy, 36, 787-797(2008). https://doi.org/10.1016/j.enpol.2007.10.029