DOI QR코드

DOI QR Code

Preparation of Polyamide Thin Film Composite Memrbanes with Metal Complex Contained Polysulfone Support Layer and Evaluation of Forward Osmosis Performance

금속 착물을 함유한 폴리술폰 지지층을 이용한 폴리아미드계 복합막의 제조 및 정삼투 성능 평가

  • Kim, Nowon (Department of Environmental Engineering, Dong-Eui University) ;
  • Jung, Boram (Department of Environmental Engineering, Dong-Eui University)
  • Received : 2016.08.19
  • Accepted : 2016.08.22
  • Published : 2016.08.31

Abstract

Thin film composite (TFC) polyamide membranes were prepared on polysulfone (PSF) supports for forward osmosis (FO) applications. To understand the influence of polarity and porosity of support layer on the formation of polyamide structure and the final FO performance, clathochelate metal complex (MC) contained PSF supports were prepared via the phase inversion process from various PSF casting solutions containing 0.1-0.5 wt% of MC in dimethyl formamide (DMF) solvent (18 wt%). A crosslinked aromatic polyamide layer was then fabricated on top of each support to form a TFC membrane. For the porous PSF supports prepared with relatively low concentration casting solutions (12 wt%), the PET film was removed after phase inversion and crosslinked aromatic polyamide layer was then fabricated. The tested sample from PSF (18 wt%)/MC (0.5 wt%) casting solution presented outstanding FO performance, almost similar water flux (9.99 LMH) with lower reverse salt flux (RSF, 0.77 GMH) compared to commercial HTI FO membrane(10.97 LMH of flux and 2.2 GMH of RSF). By addition of MC in casting solution, the thickness of the active layer in FO membranes was reduced, however, the increased RSF value was obtained.

정삼투 분리막 용도에 적합한 폴리아미드 복합막의 제조에 있어 지지층의 극성 및 공극률이 폴리아미드 구조 및 정삼투 분리막 투과 성능에 미치는 영향을 살펴보기 위하여 클레쏘킬레이트 금속착물(0.1-0.5중량%)이 함유된 폴리술폰(18중량%) 용액을 상전이 공정을 통하여 지지층을 제조하였다. 제조된 지지층 상에 방향족 폴리아미드 활성층을 제막하였다. 다공성 PSF 지지층 제조를 위하여 상대적으로 낮은 폴리술폰(12중량%) 용액을 이용한 지지층을 폴리에스터 필름상에서 제조한 후 필름을 제거하고 제조된 지지층 상에 방향족 폴리아미드 활성층을 제막하였다. 제막된 시편 중 폴리술폰(18중량%)/금속착물(0.5중량%)로 만들어진 FO막은 유량 9.99 LMH, reverse salt flux 0.77 GMH로 HTI의 상용막(10.97 LMH, 2.2 GMH)과 비교해도 거의 비슷한 유량값과 향상된 RSF 값을 얻을 수 있었다. 캐스팅 용액의 금속착물의 첨가로 활성층 두께가 줄어들었으나 제거효율은 향상되는 결과를 얻을 수 있었다.

Keywords

References

  1. N. Y. Yip, A. Tiraferri, W. A. Phillip, J. D. Schiffman, L. A. Hoover, Y. C. Kim, and M. Elimelech, "Thin-film composite pressure retarded osmosis membranes for sustainable power generation from salinity gradients", Environ. Sci. Technol., 45, 4360 (2011). https://doi.org/10.1021/es104325z
  2. A. Achilli, T. Y. Cath, E. A. Marchand, and A. E. Childress, "The forward osmosis membrane bioreactor: a low fouling alternative to MBR processes", Desalination, 239, 10 (2009). https://doi.org/10.1016/j.desal.2008.02.022
  3. K. Lutchmiah, E. R. Cornelissen, D. J. H. Harmsen, J. W. Post, K. Roest, K. Lampi, H. Ramaekers, and L. C. Rietveld, "Water recovery from sewage using forward osmosis", Water Sci. Technol., 64, 1443 (2011). https://doi.org/10.2166/wst.2011.773
  4. E. Butler, A. Silva, K. Horton, Z. Rom, M. Chwatko, A. Havasov, and J. R. McCutcheon, "Point of use water treatment with forward osmosis for emergency relief", Desalination, 312, 23 (2013). https://doi.org/10.1016/j.desal.2012.12.013
  5. A. Achilli, T. Y. Cath, and A. E. Childress, "Power generation with pressure retarded osmosis: an experimental and theoretical investigation", J. Membr. Sci., 343, 42 (2009). https://doi.org/10.1016/j.memsci.2009.07.006
  6. K. L. Lee, R. W. Baker, and H. K. Lonsdale, "Membranes for power generation by pressure-retarded osmosis", J. Membr. Sci., 8, 141 (1981). https://doi.org/10.1016/S0376-7388(00)82088-8
  7. A. Achilli, T. Cath, and A. childress, "Power generation with retarded osmosis: An experimental and theoretical investigation", J. Membr. Sci., 343, 42 (2009). https://doi.org/10.1016/j.memsci.2009.07.006
  8. T. Cath, A. Childress, and M. Elimelech, "Forward osmosis : principles, application, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  9. R. Babu, N. K. Rastogi, and K. S. M. S. Raghavarao, "Effect of process parameters on transmembrane flux during direct osmosis", J. Membr. Sci., 280, 185 (2006). https://doi.org/10.1016/j.memsci.2006.01.018
  10. E. Kravath and J. A. Davis, "Desalination of seawater by direct osmosis", Desalination, 16, 151 (1975). https://doi.org/10.1016/S0011-9164(00)82089-5
  11. O. Kessler and C. D. Moody, "Drinking water from sea water by forward osmosis", Desalination, 18, 297 (1976). https://doi.org/10.1016/S0011-9164(00)84119-3
  12. S. Hong, S. Lee, J. H. Kim, J. H. Kim, and Y. Ju, "Evolution of RO Process for Green Future", KIC News, 14, 9 (2011).
  13. Y. Xu, X. Peng, C. Y. Tang, Q. S. Fu, and S. Nie, "Effect of draw solution concentration and operating conditions on forward osmosis and pressure retarded osmosis performance in a spiral wound module", J. Membr. Sci., 348, 298 (2010). https://doi.org/10.1016/j.memsci.2009.11.013
  14. T. Y. Cath, A. E. Childress, and M. Elimelech, "Forward osmosis: principles, applications, and recent developments", J. Membr. Sci., 281, 70 (2006). https://doi.org/10.1016/j.memsci.2006.05.048
  15. D. Stillman, L. Krupp, and Y.-H. La, "Mesh-reinforced thin film composite membranes for forward osmosis applications: The structure-performance relationship", J. Membr. Sci., 468, 308 (2014). https://doi.org/10.1016/j.memsci.2014.06.015
  16. N. Kim and B. Jung, Preparation of forward osmosis membranes with low internal concentration polarization,. Membr. J., 24, 453 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.453
  17. D. Xiao, C. Y. Tang, J. Zhang, W. C. L. Lay, R. Wang, and A. G. Fane, "Modeling salt accumulation in osmotic membrane bioreactor simplications for FO membrane selection and system operation", J. Membr. Sci., 366, 314 (2011). https://doi.org/10.1016/j.memsci.2010.10.023
  18. B. Jung, Y. Son, Y. T. Lee, and N. Kim, Preparation of organic-inorganic hybrid PES membranes using Fe(II) clathrochelate, Membr. J., 23, 80 (2013).
  19. B. Jung, J. H. Kim, B. S. Kim, Y. I. Park, D. H. Song, and I. C. Kim, "Effect of support membrane property on performance of forward osmosis membrane", Membr. J., 20, 235 (2010).
  20. S. H. Ahn, I. C. Kim, D. H. Song, J. Jegal, Y. Kwon, and H. W. Rhee, "Pore structure and separation properties of thin film composite forward osmosis membrane with different support structures", Membr. J., 23, 251 (2013).
  21. H. Ahn, J. Kim, and Y. Kwon, "Preparation of cellulose acetate membrane and its evaluation as a forward osmosis membrane", Membr. J., 24, 136 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.136
  22. J. Wei, C. Qiu, C. Y. Tang, R. Wang, and A. G. Fane, "Synthesis and characterization of flat-sheet thin film composite forward osmosis membranes", J. Membr. Sci., 372, 292 (2011). https://doi.org/10.1016/j.memsci.2011.02.013