DOI QR코드

DOI QR Code

Sieving the Polymer Chains through Anodic Aluminum Oxide Membranes

Anodic Aluminum Oxide Membrane을 통한 고분자 사슬의 선택적 투과

  • Choi, Yong-Joon (Polymer Nano-Structure Lab, Dept. of Applied Organic Materials Engr., Inha Univ.) ;
  • Lee, Han Sup (Polymer Nano-Structure Lab, Dept. of Applied Organic Materials Engr., Inha Univ.)
  • 최용준 (인하대학교 유기응용재료공학과) ;
  • 이한섭 (인하대학교 유기응용재료공학과)
  • Received : 2016.07.01
  • Accepted : 2016.08.25
  • Published : 2016.08.31

Abstract

Techniques for selectively separating molecules of gas and liquid states using various separation membranes have been widely used in variety of applications such as chemical, biological, pharmaceutical, and petrochemical industries. As the nanochannel diameter, inter-channel distance and length of the nanochannel of the anodic aluminum oxide (AAO) membranes can be precisely controlled, various studies to effectively separate mixture of various molecules using AAO membrane have been widely carried out. In this study, we fabricated AAO membranes of cylindrical nanochannels of various diameter sizes and of through-hole structure, that is, nanochannels of which both ends of each nanochannel are open. Using those AAO membranes of through-hole nanochannel structure, we studied the selective permeation polymer chains dissolved in a solvent based on hydraulic volume of the polymer chains. We found a precise, quantitative relationship between the radius of gyration of polymer chains that permeated through nanochannels inside AAO membrane and the diameter of nanochannels. In addition, we demonstrate that the behavior of the polymer solution flowing through nanochannel of the AAO membrane can be successfully described with the Hagen-Poiseuille relationship. It is, therefore, possible to theoretically interpret the nanoflow of the solution flowing inside the cylindrical nanochannel.

분리막(Separation membrane)을 이용하여 기체 또는 액체상태로 존재하는 분자들을 선택적으로 분리하는 기술은 화학, 생물, 제약, 석유화학 등의 산업에서 매우 다양하게 응용되고 있으며 산업적으로 매우 큰 비중을 차지하고 있다. Anodic aluminum oxide (AAO) 막은 nanochannel의 직경, nanochannel 간의 거리 및 원통형 nanochannel의 길이 등을 정밀하게 조절할 수 있어 AAO 막을 이용하여 혼합분자를 효과적으로 분리하려는 다양한 연구가 진행되고 있다. 본 연구에서는 양 말단이 열려있어 through-hole 구조로 다양한 직경의 nanochannel을 가지는 AAO 막을 제작하였으며, 이것을 이용하여 용매에 녹아있는 고분자 사슬의 수력학적 부피에 따른 선택적 투과를 관찰하였다. Nanochannel을 투과한 고분자 사슬의 회전반지름과 nanochannel의 직경 사이에 정량적인 관계가 있음을 확인하였다. 또한 AAO 막의 nanochannel을 흐르는 고분자 용액의 유동률(flow rate)이 Hagen-Poiseuille 관계식으로 정확하게 설명될 수 있음을 확인하여 AAO 내에 존재하는 원통형태의 nanochannel 내에서 흐르는 용액의 나노흐름(nanoflow)에 대한 이론적 해석이 가능함을 증명하였다.

Keywords

References

  1. B. Gates, Q. Xu, M. Stewart, D. Ryan, C. Willson, and G. Whitesides, "New approaches to nanofabrication: Molding, printing, and other techniques", Chem. Rev., 105, 1171 (2005). https://doi.org/10.1021/cr030076o
  2. J. L. Snyder, A. Clark Jr., D. Z. Fang, T. R. Gaborski, C. C. Striemer, P. M. Fauchet, and J. L. McGrath, "An experimental and theoretical analysis of molecular separations by diffusion through ultrathin nanoporous membranes", J. Membr. Sci., 369, 119 (2011). https://doi.org/10.1016/j.memsci.2010.11.056
  3. H. U. Osmanbeyoglu, T. B. Hur, and H. K. Kim, "Thin alumina nanoporous membranes for similar size biomolecule separation", J. Membr. Sci., 343, 1 (2009). https://doi.org/10.1016/j.memsci.2009.07.027
  4. S. W. Kang, "Review on facilitated olefin transport membranes utilizing polymer electrolytes and polymer nanocomposites", Membr. J., 26, 38 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.38
  5. A. Mozalev, S. Magaino, and H. Imai, "The formation of nanoporous membranes from anodically oxidized aluminium and their application to Li rechargeable batteries", Electrochim. Acta, 46, 2825 (2001). https://doi.org/10.1016/S0013-4686(01)00497-2
  6. Y. S. Jeon and J. W. Rhim, "Preparation and performance of composite membrane prepared by layer- by-layer coating method", Membr. J., 25, 538 (2016).
  7. S. Letant, T. van Buuren, and L. Terminello, "Nanochannel arrays on silicon platforms by electrochemistry", Nano Lett., 4, 1705 (2004). https://doi.org/10.1021/nl049111c
  8. H. Tong, H. Jansen, V. Gadgil, C. Bostan, E. Berenschot, C. van Rijn, and M. Elwenspoek, "Silicon nitride nanosieve membrane", Nano Lett., 4, 283 (2004). https://doi.org/10.1021/nl0350175
  9. C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, "Charge- and size-based separation of macromolecules using ultrathin silicon membranes", Nature, 445, 749 (2007). https://doi.org/10.1038/nature05532
  10. H. Lira and R. Paterson, "New and modified anodic alumina membranes - Part III. Preparation and characterisation by gas diffusion of 5 nm pore size anodic alumina membranes", J. Membr. Sci., 206, 375 (2002). https://doi.org/10.1016/S0376-7388(01)00782-7
  11. A. Yamaguchi, F. Uejo, T. Yoda, T. Uchida, Y. Tanamura, T. Yamashita, and N. Teramae, "Self-assembly of a silica-surfactant nanocomposite in a porous alumina membrane", Nat. Mater., 3, 337 (2004). https://doi.org/10.1038/nmat1107
  12. S. S. Penumetcha, R. Kona, J. L. Hardin, A. L. Molder, and E. D. Steinle, "Monitoring transport across modified nanoporous alumina membranes", Sensors, 7, 2942 (2007). https://doi.org/10.3390/s7112942
  13. I. Vlassiouk, A. Krasnoslobodtsev, S. Smirnov, and M. Germann, ""Direct" detection and separation of DNA using nanoporous alumina filters", Langmuir, 20, 9913 (2004). https://doi.org/10.1021/la047959a
  14. M. Lillo and D. Losic, "Pore opening detection for controlled dissolution of barrier oxide layer and fabrication of nanoporous alumina with throughhole morphology", J. Membr. Sci., 327, 11 (2009). https://doi.org/10.1016/j.memsci.2008.11.033
  15. T. Xu, R. Piner, and R. Ruoff, "An improved method to strip aluminum from porous anodic alumina films", Langmuir, 19, 1443 (2003). https://doi.org/10.1021/la0264724
  16. Y. Zhao, M. Chen, Y. Zhang, T. Xu, and W. Liu, "A facile approach to formation of through-hole porous anodic aluminum oxide film", Mater. Lett., 59, 40 (2005). https://doi.org/10.1016/j.matlet.2004.09.018
  17. J. Schneider, N. Engstler, K. Budna, C. Teichert, and S. Franzka, "Freestanding, highly flexible, large area, nanoporous alumina membranes with complete through-hole pore morphology", Eur. J. Inorg. Chem., 2005, 2352 (2005). https://doi.org/10.1002/ejic.200401046
  18. C. Y. Han, G. A. Willing, Z. Xiao, and H. H. Wang, "Control of the anodic aluminum oxide barrier layer opening process by wet chemical etching", Langmuir, 23, 1564 (2007). https://doi.org/10.1021/la060190c
  19. G. D. Sulka, A. Brzozka, L. Zaraska, and M. Jaskula, "Through-hole membranes of nanoporous alumina formed by anodizing in oxalic acid and their applications in fabrication of nanowire arrays", Electrochim. Acta, 55, 4368 (2010). https://doi.org/10.1016/j.electacta.2010.01.048
  20. J. Cui, Y. Wu, Y. Wang, H. Zheng, G. Xu, and X. Zhang, "A facile and efficient approach for pore-opening detection of anodic aluminum oxide membranes", Appl. Surf. Sci., 258, 5305 (2012). https://doi.org/10.1016/j.apsusc.2012.01.099
  21. S. A. Yang, Y. C. Choi, and S. D. Bu, "Effects of etching time on the bottom surface morphology of ultrathin porous alumina membranes for use as masks", J. Korean Phys. Soc., 61, 1660 (2012). https://doi.org/10.3938/jkps.61.1660
  22. H. Han, S. Park, J. S. Jang, H. Ryu, K. J. Kim, S. Baik, and W. Lee, "In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: Nonuniform impurity distribution in anodic oxide", ACS Appl. Mater. Interfaces, 5, 3441 (2013). https://doi.org/10.1021/am400520d
  23. H. Leese and D. Mattia, "Electroosmotic flow in nanoporous membranes in the region of electric double layer overlap", Microfluid. Nanofluid., 16, 711 (2014). https://doi.org/10.1007/s10404-013-1255-0
  24. A. Santos, L. Vojkuvka, J. Pallares, J. Ferre- Borrull, and L. F. Marsal, "In situ electrochemical dissolution of the oxide barrier layer of porous anodic alumina fabricated by hard anodization", J. Electroanal. Chem., 632, 139 (2009). https://doi.org/10.1016/j.jelechem.2009.04.008
  25. J. Liu, S. Liu, H. Zhou, C. Xie, Z. Huang, C. Fu, and Y. Kuang, "Preparation of self-ordered nanoporous anodic aluminum oxide membranes by combination of hard anodization and mild anodization", Thin Solid Films, 552, 75 (2014). https://doi.org/10.1016/j.tsf.2013.12.023
  26. I. Vrublevsky, V. Parkoun, V. Sokol, and J. Schreckenbach, "Study of chemical dissolution of the barrier oxide layer of porous alumina films formed in oxalic acid using a re-anodizing technique", Appl. Surf. Sci., 236, 270 (2004). https://doi.org/10.1016/j.apsusc.2004.04.030
  27. J. Oh and C. V. Thompson, "Selective barrier perforation in porous alumina anodized on substrates", Adv. Mater., 20, 1368 (2008). https://doi.org/10.1002/adma.200701719
  28. T. Xu, G. Zangari, and R. Metzger, "Periodic holes with 10 nm diameter produced by grazing Ar+ milling of the barrier laver in hexagonally ordered nanoporous alumina", Nano Lett., 2, 37 (2002). https://doi.org/10.1021/nl010075g
  29. W. Chen, J. Wu, J. Yuan, X. Xia, and X. Lin, "An environment-friendly electrochemical detachment method for porous anodic alumina", J. Electroanal. Chem., 600, 257 (2007). https://doi.org/10.1016/j.jelechem.2006.10.022
  30. J. Yuan, F. He, D. Sun, and X. Xia, "A simple method for preparation of through-hole porous anodic alumina membrane", Chem. Mat., 16, 1841 (2004). https://doi.org/10.1021/cm049971u
  31. L. Gao, P. Wang, X. Wu, S. Yang, and X. Song, "A new method detaching porous anodic alumina films from aluminum substrates", J. Electroceram., 21, 791 (2008). https://doi.org/10.1007/s10832-007-9314-0
  32. A. Brudzisz, A. Brzozka, and G. D. Sulka, "Effect of processing parameters on pore opening and mechanism of voltage pulse detachment of nanoporous anodic alumina", Electrochim. Acta, 178, 374 (2015). https://doi.org/10.1016/j.electacta.2015.08.005
  33. J. H. Yuan, W. Chen, R. J. Hui, Y. L. Hu, and X. H. Xia, "Mechanism of one-step voltage pulse detachment of porous anodic alumina membranes", Electrochim. Acta, 51, 4589 (2006). https://doi.org/10.1016/j.electacta.2005.12.044
  34. A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina", J. Appl. Phys., 84, 6023 (1998). https://doi.org/10.1063/1.368911
  35. G. Ding, M. Zheng, W. Xu, and W. Shen, "Fabrication of controllable free-standing ultrathin porous alumina membranes", Nanotechnology, 16, 1285 (2005). https://doi.org/10.1088/0957-4484/16/8/050
  36. O. Jessensky, F. Muller, and U. Gosele, "Self-organized formation of hexagonal pore arrays in anodic alumina", Appl. Phys. Lett., 72, 1173 (1998). https://doi.org/10.1063/1.121004
  37. O. Jessensky, F. Muller, and U. Gosele, "Self-organized formation of hexagonal pore structures in anodic alumina", J. Electrochem. Soc., 145, 3735 (1998). https://doi.org/10.1149/1.1838867
  38. H. Masuda, F. Hasegwa, and S. Ono, "Self-ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution", J. Electrochem. Soc., 144, L127 (1997). https://doi.org/10.1149/1.1837634
  39. H. Masuda, K. Yada, and A. Osaka, "Self-ordering of cell configuration of anodic porous alumina with large-size pores in phosphoric acid solution", Jpn. J. Appl. Phys. Part 2 - Lett., 37, L1340 (1998). https://doi.org/10.1143/JJAP.37.L1340
  40. A. Li, F. Muller, A. Birner, K. Nielsch, and U. Gosele, "Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina", J. Appl. Phys., 84, 6023 (1998). https://doi.org/10.1063/1.368911
  41. H. Masuda and K. Fukuda, "Ordered Metal Nanohole Arrays made by a 2-Step Replication of Honeycomb Structures of Anodic Alumina", Science, 268, 1466 (1995). https://doi.org/10.1126/science.268.5216.1466
  42. K. Terao and J. Mays, "On-line measurement of molecular weight and radius of gyration of polystyrene in a good solvent and in a theta solvent measured with a two-angle light scattering detector", Eur. Polym. J., 40, 1623 (2004). https://doi.org/10.1016/j.eurpolymj.2004.03.010