References
- Ghosh, P. K. & Narayanan, S. (2011). Automatic speech recognition using articulatory features from subject-independent acoustic-to-articulatory inversion. The Journal of the Acoustical Society of America, 130(4), EL251-EL257. https://doi.org/10.1121/1.3634122
- Sondhi, M. M. & Resnick, J. R. (1983). The inverse problem for the vocal tract: Numerical methods, acoustical experiments, and speech synthesis. The Journal of the Acoustical Society of America, 73(3), 985-1002. https://doi.org/10.1121/1.389024
- Wilson, I., Gick, B., O'Brien, M. G., Shea, C., & Archibald, J. (2006). Ultrasound technology and second language acquisition research. Proceedings of the 8th Generative Approaches to Second Language Acquisition Conference (GASLA 2006) (pp. 148-152).
- Wrench, A. A., Gibbon, F., McNeill, A. M., & Wood, S. (2002). An EPG therapy protocol for remediation and assessment of articulation disorders. ICSLP.
- Dusan, S. (2001). Methods for integrating phonetic and phonological knowledge in speech inversion. Proceedings of the International Conference on Speech, Signal and Image Processing. Malta.
- Engwall, O. (2006). Evaluation of speech inversion using an articulatory classifier. Proceedings of the 7th International Seminar on Speech Production (pp. 469-476).
- Papcun, G., Hochberg, J., Thomas, T. R., Laroche, F., Zacks, J., & Levy, S. (1992). Inferring articulation and recognizing gestures from acoustics with a neural network trained on x-ray microbeam data. The Journal of the Acoustical Society of America, 92(2), 688-700. https://doi.org/10.1121/1.403994
- Zacks, J. & Thomas, T. R. (1994). A new neural network for articulatory speech recognition and its application to vowel identification. Computer Speech & Language, 8(3), 189-209. https://doi.org/10.1006/csla.1994.1009
- Richmond, K. (2001). Mixture density networks, human articulatory data and acoustic-to-articulatory inversion of continuous speech. Proceedings of Workshop on Innovation in Speech Processing (WISP 2001) (pp. 259-276).
- Qin, C. & Carreira-Perpinan, M. A. (2010). Articulatory inversion of american english /r/ by conditional density modes. Proceedings of 11th Annual Conference of the International Speech Communication Association (Interspeech 2010) (pp. 1998-2001)
- Richmond, K., Hoole, P., & King, S. (2011). Announcing the Electromagnetic Articulography (Day 1) Subset of the mngu0 Articulatory Corpus. Proceedings of 12th Annual Conference of the International Speech Communication Association (Interspeech 2011) (pp. 1505-1508).
- Mitra, V., Nam, H., Espy-Wilson, C., Saltzman, E., & Goldstein, L. (2011). Articulatory information for noise robust speech recognition. Audio, Speech, and Language Processing, IEEE Transaction on Audio, Speech, and Language Processing, 19(7), 1913-1924. https://doi.org/10.1109/TASL.2010.2103058
- Najnin, S. & Banerjee, B. (2015). Improved speech inversion using general regression neural network. The Journal of the Acoustical Society of America,138(3), EL229-EL235. https://doi.org/10.1121/1.4929626
- Tu, J. V. (1996). Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes. Journal of clinical epidemiology, 49(11), 1225-1231. https://doi.org/10.1016/S0895-4356(96)00002-9
- Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Simpson, A. J. (2015). Taming the ReLU with Parallel Dither in a Deep Neural Network (arXiv preprint). Retrieved from http://arxiv.org/abs/1509.05173 on September 17, 2015