DOI QR코드

DOI QR Code

Spatio-temporal analysis of tuberculosis mortality estimations in Korea

시공간 분석을 이용한 결핵 사망률추정

  • Park, Jincheol (Department of Statistics, Keimyung University) ;
  • Kim, Changhoon (Department of Occupational and Preventive Medicine, Pusan National University School of Medicine) ;
  • Han, Junhee (Division of Biostatistics, Pusan National University Yangsan Hospital)
  • 박진철 (계명대학교 통계학과) ;
  • 김창훈 (부산대학교 의학전문대학원) ;
  • 한준희 (양산부산대학교병원 의학통계실)
  • Received : 2016.08.27
  • Accepted : 2016.09.21
  • Published : 2016.09.30

Abstract

According to WHO (World Health Organization), Korea ranked 1st place for TB mortality rate among OECD countries. In order to improve the situation, several administrative policies have been suggested and their efforts start showing some improvement. Meanwhile, those policies must be supported by solid scientific evidences by conducting appropriate statistical analyses. In particular, incidence and mortality rates of respiratory infectious disease such as TB must be analyzed considering their geographical characteristics. In this paper, we analyzed TB mortality rates in Korea from 2000 to 2011 using one of bayesian spatio-temporal models, which is implemented as R package (R-INLA).

우리나라는 결핵에 의한 사망률이 OCED 국가 중 1위라는 불명예를 안고 있다. 이러한 오명을 씻고자 최근 여러 가지 연구와 정책적인 대책이 수립되었고, 그 성과들이 어느 정도 나타나고 있다. 하지만, 이러한, 정책의 수립 및 결정은 명확한 근거에 기반해야 하고 이러한 근거는 감염성 질환인 결핵의 특성상 결핵 발병률이나 사망률 자료의 경우 시간적 공간적 상관성 등을 충분히 고려하여 분석되어야한다. 본 논문에서는 2000년부터 2011년까지의 결핵등록자료를 활용하여 결핵으로 인한 사망률이 시간적으로 어떻게 변화되어 왔고 또한 공간적인 특성이 어떠한지를 분석하기 위해 INLA R 패키지로 구현된 시공간모형을 이용하여 분석한 결과를 제시한다.

Keywords

References

  1. Ahn, D., Han, J., Yoon, T., Kim, C. and No, M. (2015). Small area estimations for disease mapping by using spatial model. Journal of the Korean Data & Information Science Society, 26, 101-109. https://doi.org/10.7465/jkdi.2015.26.1.101
  2. Auchincloss, A. H., Gebreab, S. Y., Mair, C. and Roux, A. V. D. (2012). A review of spatial methods in epidemiology, 2000-2010. Annual Review of Public Health, 33, 107-122. https://doi.org/10.1146/annurev-publhealth-031811-124655
  3. Areias, C., Briz. T. and Nunes. C. (2015). Pulmonary tuberculosis space-time clustering and spatial variation in temporal trends in portugal, 2000-2010: An updated analysis. Epidemiology and Infection, 143, 3211-3219. https://doi.org/10.1017/S0950268815001089
  4. Banerjee, S., Carlin, B. P. and Gelfand, A. E. (2014). Hierarchical modeling and analysis for spatial data, CRC Press, Florida.
  5. Besag, J., York, Y. and Mollie, A. (1991). Bayesian image restoration with two applications in spatial statistics. Annals of the Institute of Statistical Mathematics, 43, 1-20. https://doi.org/10.1007/BF00116466
  6. Blangiardo, M. and Cameletti, M. (2015). Spatial and spatio-temporal bayesian models with R-INLA, Wiley, New Jersey.
  7. Blangiardo. M., Cameletti. M., Baio, G. and Rue, H. (2013). Spatial and spatio-temporal models with R-INLA. Spatial and Spatio-temporal Epidemiology, 7, 39-55. https://doi.org/10.1016/j.sste.2013.07.003
  8. Elliott, P. and Wartenberg, D. (2004). Spatial epidemiology: Current approaches and future challenges. Environmental Health Perspectives, 112, 998-1006. https://doi.org/10.1289/ehp.6735
  9. Gilks, W. R. and Wild, P. (1992). Adaptive rejection sampling for gibbs sampling. Applied Statistics, 337-348.
  10. Jia, Z. W., Jia, X. W., Liu, Y. X., Dye, C., Chen, F., Chen, C. S., Zhang, W. Y., Li, X. W., Cao, W. C. and Liu, H. L. (2008). Spatial analysis of tuberculosis cases in migrants and permanent residents, Beijing, 2000-2006. Emerging Infectious Diseases, 14, 1413-1419. https://doi.org/10.3201/eid1409.071543
  11. Knorr-Held, L. (2000). Bayesian modelling of inseparable space-time variation in disease risk. Statistics in Medicine, 19, 2555-2567. https://doi.org/10.1002/1097-0258(20000915/30)19:17/18<2555::AID-SIM587>3.0.CO;2-#
  12. Lee, W. and Park, C. (2015). Prediction of apartment prices per unit in Daegu-Gyeongbuk areas by spatial regression models. Journal of the Korean Data & Information Science Society, 26, 561-568. https://doi.org/10.7465/jkdi.2015.26.3.561
  13. Linde, A. (2005). DIC in variable selection. Statistica Neerlandica, 59, 45-56. https://doi.org/10.1111/j.1467-9574.2005.00278.x
  14. Maciel, E. L. N., Pan , W., Dietze, R., Peres, R. L., Vinhas, S. A,, Ribeiro, F. K., Palaci, M., Rodrigues, R. R., Zandonade, E. and Golub, J. E. (2010). Spatial patterns of pulmonary tuberculosis incidence and their relationship to socio-economic status in Vitoria, Brazil. The International Journal of Tuberculosis and Lung Disease, 14, 1395-1402.
  15. Onozuka, D. and Hagihara, A. (2007). Geographic prediction of tuberculosis clusters in fukuoka, japan, using the space-time scan statistic. BMC Infectious Diseases, 7, 2767-2769.
  16. Tiwari, N., Adhikari, C. M. S., Tewari, A. and Kandpal, V. (2006). Investigation of geo-spatial hot spots for the occurrence of tuberculosisin almora district, India, using GIS and spatial scan statistic. International Journal of Health Geographics, 5, 33. https://doi.org/10.1186/1476-072X-5-33
  17. Wang, T., F. Xue, Y. Chen, Y. Ma, and Y. Liu. (2012). The spatial epidemiology of tuberculosis in Linyi City, China, 2005-2010. BMC Public Health, 12, 885. https://doi.org/10.1186/1471-2458-12-885
  18. World Health Organization. (2014). Global Tuberculosis Report 2014, World Health Organization, Geneva, Switzerland.

Cited by

  1. 사회·경제적 지표를 활용한 결핵의 잠재적 위험도 분석 - 충청남도 8개 시를 대상으로- vol.17, pp.1, 2016, https://doi.org/10.15683/kosdi.2021.3.31.068